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Abstract. We study the kernels of representations of mapping class groups of surfaces on twisted homolo-

gies of configuration spaces. We relate them with the kernel of a natural twisted intersection pairing: if the
latter kernel is trivial then the representation is faithful. As a main example, we study the representations

ρn of Mod(Σg,1) based on a Heisenberg local system on the n points configuration space of Σg,1, introduced

in [BPS21], and some of their specializations. In the one point configuration case, or when the Heisenberg
group is quotiented by an element of its center, we find kernel elements in the twisted intersection form.

On the other hand, for n > 2 configuration points and the full Heisenberg local system, we identify subrep-

resentations of subgroups of Mod(Σg,1) with Lawrence representations. In particular, we find one of these
subgroups, which is isomorphic to a pure braid group on g strands, on which the representations ρn are

faithful.

1. Introduction

1.1. History of homological representations for mapping class groups and of their kernels.
Let S be an orientable surface, with zero or one boundary component. Its mapping class group denoted
Mod(S) is the group of isotopy classes of orientation preserving diffeomorphisms of S. If S has punctures,
diffeomorphisms have to preserve the set of punctures, and isotopies can move them. The seminal books
introducing these groups are [Bir, FM], and they showcase how this object is at the interplay between group
theory and topology, since it is involved in many topological constructions due to its topological nature while
their group-theoretic properties are mysterious and their representation theory very rich. The present paper
is interested in homological representations of mapping class groups. Since the homology of a manifold
is (usually) functorial regarding diffeomorphisms and invariant under isotopies, many representations of
mapping class groups can be constructed using homology. The canonical example is the following morphism:

(1) Mod(S)→ AutZ(H1(S)).

When nothing is indicated in homology groups, we assume that it refers to the standard Z-homology. When
S is of genus g > 1, this morphism has kernel the Torelli group of S, usually denoted I(S). When S has
zero or one boundary component, its homology is endowed with a perfect symplectic pairing derived from
the algebraic intersection between curves in S. In this case, there is the following short exact sequence:

1→ I(S)→ Mod(S)→ Sp(2g,Z)→ 1,

see all the details in [FM].
Linear representations of Mod(S) have many possible uses, for instance in topology for building invariants

of topological manifolds of low dimensions. This raises the following question:

Question 1.1 ([Bir, Problem 30],[Ma18, Question 1.1]). Let S be a compact oriented surface. Is Mod(S)
linear ? That is, is there a faithful representation ρ : Mod(S) −→ GLd(C) for some integer d?

To tackle this question from a homological perspective, one can generalize the representation (1) by letting
Mod(S) act on other manifolds, and by using twisted homologies. The goal of the present work is to study
the kernel of such homological representations and some related aspects of their constructions.

Historically, a first improvement of homological representations arose from the use of twisted homology.
In the present paper, a twisted homology of a manifold X is built out of the following input:

(2) ϕ : π1(X)→ G,
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where G is a group and ϕ is a surjective morphism. One can then consider the ϕ-twisted homology of
X denoted H•(X;ϕ), which carries a natural Z[G]-module structure. When X is a surface S with one
boundary component and ϕ is the abelianization morphism, the group I(S) acts on H1(S;ϕ) and the action
is Z[H1(S)]-linear. Note that Z[H1(S)] is isomorphic to the ring of Laurent polynomials in 2g variables.
Those representations are called Magnus representations [Ma39] (see also [Bir]). The action does not extend
to a Z[H1(S)]-linear action on the whole mapping class group but rather to a twisted action where the action
of Mod(S) on the group of coefficients H1(S) enters the picture. The twisted homology construction and
its inherent relation with twisted representations of mapping class group in a very broad sense is precisely
discussed in Section 2. It is often convenient to assume that S has one boundary component since then
π1(S) is a free group, and Mod(S) is isomorphic to a subgroup of Aut(π1(S)) (by the Dehn–Nielsen–Baer
theorem [FM, Theorem 8.1]). One gets an explicit construction of H1(S;ϕ) from Fox differential calculus
on automorphisms of free groups. In Section 2.4 we introduce a construction of Magnus representations but
for closed surfaces, which is a new construction, to the authors’ knowledge.

When S is a disk with m punctures, denoted Dm, the group Mod(Dm) is well known to be the braid
group on m strands denoted Bm and I(Dm) to be the the pure braid group denoted PBm. In that case
the Magnus representation of PBm is named the Gassner representation (see [Bir]) and takes coefficients in
Z[H1(Dm)] = Z[t±1

1 , . . . , t±1
m ]. By evaluating variables ti’s to the same variable t, the representation extends

to Bm and recovers the famous (reduced) Burau representation. Notice that the Burau representation was
originally defined by assigning matrices to the Artin generators of the braid groups, instead of the previous
homologic construction. The Burau representation is faithful for the groups B2 and B3, which can be checked
directly from matrices, and the question for higher cases remained open for a very long time. It is thanks
to its homological interpretation that kernel elements were discovered by Long and Paton [L-P] for m ≥ 6
and by Bigelow [Big99] for m = 5, while the question of the faithfulness for m = 4 is still open. The kernel
elements were exhibited thanks to a twisted homological intersection pairing :

(3) 〈·, ·〉G : H•(X;ϕ)× (H•(X;ϕ))† → Z[G]

where (H•(X;ϕ))† is a dual homology space regarding this pairing, and in the Burau case, X = Dm, ϕ
is the abelianization morphism, G the abelianization of π1(S). We note that it is not known if Gassner
representations are faithful, see e.g. [Knu], however, their kernels are strictly smaller than that of the Burau
representations. For the higher genus case, namely when S = Σg,1 is the surface of genus g with 1 boundary
component, the Magnus representations were studied from the homological perspective by Suzuki. He has
shown, using again the corresponding twisted homological pairing (3), that these representations are un-
faithful [Su02, Su05a, Su05b]. Roughly speaking, kernel elements can be associated to pairs of simple closed
curves in Σg,1 with twisted pairing 0. Magnus representations enjoy transvections formulas for actions of
Dehn twists (see for instance [Su05b, Theorem 4.2]). We generalize these transvection formulas to represen-
tations based on the Heisenberg local system in Section 4.1.

There is another direction to construct more powerful homological representations: the group Mod(S) hap-
pens to naturally act on homologies of higher dimensional manifolds: configuration spaces of S. For an
integer n ∈ N we denote by Confn(S) the unordered configuration space of n-points in S, and Confon(S)
the ordered configuration space. A rigorous definition is provided in Section 2.1. For the surface Σg,1 with
positive genus, Moriyama introduced in [Mo07] the family of representations:

(4) Morn : Mod(Σg,1)→ Hn(Confon(Σg,1))

Moriyama showed that the kernel of (4) is the n-th term of the Johnson filtration of the mapping class group
denoted {Jn}n∈N where Ji ⊂ Ji−1 ⊂ Mod(Σg,1), and J1 = I(Σg,1).

All of the Johnson subgroups are non trivial, but they have the property that
⋂
n∈N Jn = {1}. The

sequence of representations on ordered configuration spaces is therefore asymptotically faithful.
The most powerful homological representations arise from using a mix of both twisted homologies and con-

figuration spaces. This was first introduced by R. Lawrence in the case of punctured disks and braid groups
in [La90]. The input ϕn to twist the homology (Eq. (2)) is the abelianization morphism of π1(Confn(Dm))
composed with a specialization of variables corresponding to the passage from Gassner to Burau in the
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case n = 1. The result is known as the Lawrence representations and consists of the following sequence of
representations:

(5) Lm,n : Bm → EndZ[q±1,s±1] (Hn(Confn(Dm), ϕn)) ,

We recall precise definitions of the Lawrence representations in Section 6. The term n = 1 is the Burau
representation. The representations Lm,n have coefficients in the ring Z[q±1, s±1] encoding the twisted
structure. Those representations lead to the following spectacular result:

Theorem 1.2 (Bigelow [Big00, Theorem 1.1], Krammer [Kr02, Theorem B]). For all m ≥ 0, the kernel of
Lm,2 is trivial. In particular, braid groups are linear.

Therefore, braid groups form the first infinite family of positive answers to Question 1.1. This raises the
questions whether some representations based on the twisted homology of configuration spaces of surfaces
with one boundary component are faithful for larger genus. Indeed, Bigelow’s proof proceeds by showing
that the natural twisted homological pairing (from (3)) detects geometric intersection between arcs in Dm.
Using the representations Lm,2, it was later shown that mapping class groups of punctured spheres and of
the closed genus 2 surface are also linear [BB01]. Notice that Bigelow’s argument is easily generalized to
representations Lm,n for n > 2 (see e.g. [Ma20b]).

For higher genus surfaces, Question 1.1 is still open, and one would be tempted to imagine extending
Bigelow’s result to positive genus surfaces by studying representations of Mod(Σg,1) on the twisted homologies
of Confn(Σg,1). A first attempt would be to twist by the abelianization of π1(Confn(Σg,1). In positive genus,
contrary to genus zero, the specialization of variables allowing to pass from the Gassner case to the Burau
case in punctured disks does not exist, and thus one must restrict representations to the Torelli subgroup
I(Σg,1). It is however possible to extend those representations the whole mapping class group, if one enlarges
the ring of coefficients, as we will explain in Section 2.1. Even more disappointing: it is expected that
homological representations built from Conf2(Σg,1) and twisted by the abelianization result in unfaithful
representations of I(Σg,1) see [Ma18, Question 1.2, Footnote]. It is not clear to the authors how to exhibit
kernel elements of the described representations but we explain why Bigelow’s strategy cannot work for the
representation on the homology of Conf2(Σg,1) twisted by the abelianization in Section 5.1, confirming the
expectation of [Ma18]. For finding faithful representations and for successfully applying Bigelow’s strategy
one would need to twist more.

In general, to construct representations of Mod(S) on twisted homologies H•(X;ϕ), the morphism ϕ from
(2) has to satisfy some compatibility conditions. This is detailed in Section 2. When X = Confn(Σg,1) the
compatibility is expressed as follows: elements of Mod(S) seen as automorphisms of π1(Confn(S)) need to
preserve the kernel of ϕ (Eq. (2)). We hence like to think about ϕ being the quotient of π1(Confn(S)) by
one of its characteristic subgroup. We are interested in quotients by terms of the lower central series of
π1(Confn(S)). The quotient by the first term corresponds to the abelianisation and was already discussed.
One learns in [BGG11, DPS] that the quotient by the next term is isomorphic to a Heisenberg group denoted
by Hg when S = Σg,1 (notice that it does not depend on n). Furthermore, that the lower central series stops
at this term, and thus Hg is the largest nilpotent quotient one could obtain of π1(Confn(Σg,1)). One can
construct the twisted homology of Confn(Σg,1) with coefficients in Z[Hg] and study how mapping classes
act on it. In the end, one gets representations ρn of (subgroups) of Mod(Σg,1) from the action on such
Heisenberg twisted homology groups. This construction was introduced in [BPS21] and its study initiated in
[BPS21, DrMa]. We also deal with this very interesting example as we believe that these Heisenberg twisted
homologies are the good level of twisting for Bigelow’s strategy ([Big00]) to work in arbitrary genus. Namely
we show that with less configuration points or with less twisting, the corresponding twisted homological pairing
cannot detect the geometric intersection of arcs in the initial surface for all genera. One can therefore not
apply Bigelow’s strategy in those cases, although it does not necessarily mean that the associated mapping
class group representation is unfaithful.

As a positive sign, for the representations ρn, with n > 1, we find a subgroup of the mapping class group,
isomorphic to a pure braid group on g strands, that acts faithfully (Sec. 6.2, Corollary 6.9).

Another family of linear representations for mapping class groups of surfaces is provided by topological
quantum field theories (TQFTs) of dimension 2 + 1, we call them quantum representations. They are very
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much related with topological invariants such as ones for closed 3-manifolds produced by such a TQFT for in-
stance with the well known Witten–Reshetikhin–Turaev (WRT) invariants. These quantum representations
arising from the WRT theory are built using as input a semisimple modular category, and the byproduct
representations present a systematic non trivial kernel made of powers of Dehn twists. TQFTs in the same
spirit but built out of non-semisimple category were constructed in [Ly94] for surfaces with one boundary
later extended in [DGGPR20] to closed surfaces and in [BCGP14] for closed surfaces equipped with a co-
homology class (and representations restricted to Torelli groups), and finally generalized to surfaces with
one boundary (equipped with a cohomology class) in [DMW] in the spirit of [Ly94]. These non-semisimple
quantum representations don’t have an obvious kernel like the semisimple WRT ones. They form another
candidate to tackle the question of linearity of mapping class groups (Question 1.1). In [Ma20] (resp. [DrMa])
it was shown that homological representations studied in the current paper recover non-semisimple quantum
representations for the case of Dm (resp. Σg,1). For surfaces equipped with cohomology classes, homolog-
ical representations are built in [DrMa, Sec. 6.3.1] and conjecturally related to quantum representations of
[DMW]. It is well known that if the image of a Dehn twist by a representation is diagonal, it has finite
order. What made non semisimple quantum representations candidates for faithful linear representations
was that one finds non diagonal Jordan blocks in the images of Dehn twists, making them of infinite order.
The representations ρn studied in this paper also satisfy this property, see Prop. 4.6.

1.2. Content of the paper. This paper is a study of homological representations of mapping class groups of
surfaces. We start by presenting a very general framework in which such representations can be constructed.
One typically obtains crossed representations of Mod(S), but we discuss how to make them into genuine
representations of the whole mapping class group. We study the role of the twisted homological intersection
pairing and we express a faithfulness criterion in terms of the kernel of this pairing. We then study the
kernel of this pairing for various setups. Doing so we figure out a few homological representations for
which the Bigelow’s strategy ([Big00]) for proving faithfulness has no chance of being successful. Along the
way we develop combinatorial tools for computing the pairing, and express the actions of Dehn twists as
twisted transvections related the pairing, in the one point configuration case. To end up with positive result
in the direction of faithfulness, we relate representations of braid subgroups in Mod(Σg,1) to homological
representations built from punctured disks à la Lawrence. For one of them, we find a pure braid subgroup
of Mod(Σg,1) that acts faithfully.

More precisely, Section 2 is devoted to the construction of mapping class group representations from
twisted homologies in general. In Sec. 2.1, we discuss the condition on the local system (see (2)) for defining
them, first as crossed representations of Mod(S). Then we explain how to uncross them by enlarging the
ring of coefficients, and how to linearize them (Prop. 2.5). At each step we pay attention to how the kernel
of the representation could grow, and give criterions for the kernel to stay the same. In Sec. 2.2 we recall the
general structure of twisted homologies when surfaces have a boundary component, along the way presenting
diagrammatic models for homology classes. We are particularly interested in the case where the local system
is the Heisenberg group

Hg := 〈a1, b1, . . . , ag, bg, σ|[ai, aj ], [bi, bj ], [σ, ai], [σ, bi], [ai, bj ]σ−2δij 〉.
where δij stands for the Kronecker symbol.

For each n ≥ 2, π1(Confn(Σg,1)) admits a surjective morphism to Hg by [BGG11]. This gives rise to

homological representations ρ
Hg
n of (a subgroup of) Mod(Σg,1), see Section 2.3. The coefficients of these

representations lie in the group ring Z[Hg]. We are also interested in the local system Hg,r := Hg/〈σr〉,
which gives rise to representations ρn,r with coefficients in Z[Hg,r]. We study linearizations of these group
rings, showing:

Proposition 1.3. For r ≥ 1, let Hg be the Heisenberg group, and Hg,r = Hg/〈σr〉.
(1) (Corollary 2.11) There is no faithful algebra map Z[Hg] −→Mn(C) for any integer n.
(2) (Proposition 2.15) For any r ≥ 1, there is a faithful algebra map Z[Hg,r] −→Mn(C), for some integer

n.
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The significance of this proposition comes from Proposition 2.5, which gives conditions under which
linearizations of the rings of coefficients do not enlarge the kernel of homological representations.

We also find a linearization of Hg in Prop. 2.13 that allows to construct a linear representation of the full
mapping class group, using the uncrossing protocol of Section 2.1.

In Section 2.4 we discuss how to construct homological representations for the mapping class groups of
closed surfaces (Proposition 2.17 and Remark 2.18). We provide such representations for the action on the
one point configuration space, but with local system either the Heisenberg local system or the Magnus local
system. The authors are unaware of a similar constructions of homological representations in the litterature,
even in the case of the Magnus local system.

In Section 3 we add to the panorama one very important homological tool : the twisted intersection pairing
(that is roughly presented in (3) in the introduction). We define it and give its classical properties in Sec. 3.1.
We then (Sec. 3.2) present dual families of homology classes, associated to simple arcs in S with ends on
∂S. This allows another version of the homological representations construction as the quotient of a space of
arcs by the kernel of a bilinear form (Prop. 3.7), similar to the so called “universal construction” used in the
context of TQFTs. We then provide a faithfulness criterion for homological representations of mapping class
groups fully inspired by Bigelow’s strategy to obtain faithfulness of braid group representations in [Big00].

Theorem 1.4 (Theorem 3.10). Let Ker(〈·, ·〉n,G) be the set of pairs of isotopy classes of simple arcs with
non-zero geometric intersection in S = Σg,1 that are sent to zero by the G-twisted intersection pairing 〈·, ·〉n,G
(see (3)) on X = Confn(S). If Ker(〈·, ·〉n,G) is empty then ρGn is faithful.

In other words, if the twisted intersection pairing detects when simple arcs in the surface have non-zero
geometric intersection then the corresponding twisted homological representation is faithful. This raises
interest in studying the “kernel” of this intersection pairing (notice that this is not a kernel in the traditional
sense, just a set of pairs of simple arcs).

Section 4 is interested in the n = 1 case, namely the first level of the representation coming from single
point configurations on Σg,1. One of its conclusion is that Bigelow’s strategy cannot be performed in this case.
Namely, in the Heisenberg case for n = 1 points of configuration, we show that Ker(〈·, ·〉1,Hg ) is not empty,
when the genus g is at least 6 (Theorem 4.7). Indeed, we find an explicit pair of non-disjoint simple arcs with
vanishing twisted intersection pairing. In Sec. 4.2.2 we exhibit simpler elements of Ker(〈·, ·〉1,Hg,2k), and in
this case also kernel elements of the representations ρ1,2k. On that matter, we show how in the Heisenberg
case, the usual transvection formula for the homological action of a Dehn twist on a curve gets twisted by

a power of σ and why it does not allow to recover an element in Ker(ρ
Hg
1 ) from a pair in Ker(〈·, ·〉1,Hg )

(Prop. 4.2). Other direct consequences of this twisted transvection formula are a criterion for two separating
Dehn twists to be distinguished by the homological representation in terms of how they cut the surface
into connected components (Prop. 4.4) and that the images of separating Dehn twists have infinite order
(Prop. 4.6). All this section relies on the nice behavior of the Heisenberg local system regarding separating
loops (Prop. 4.1).

In Section 5 we tackle the level of several configuration points (n > 1). In Proposition 5.1 we show
that Ker(〈·, ·〉n,Hg,2k) is non empty for g > k. Along the way we propose a nice combinatorial formula
for computing 〈·, ·〉n,Hg on the homology classes associated to simple arcs embedded in Σg,1. The formula
depends only on n and some simple combinatorial data regarding how the arcs intersect.

Here is a summary of our contributions to Ker(〈·, ·〉n,G) motivated by the above Theorem 1.4.

Theorem 1.5. • (G = Hg, n = 1) Ker(〈·, ·〉1,Hg ) is non empty for g ≥ 6 (Theorem 4.7, we exhibit a
pair of arcs).

• (G = Hg,2k, n = 1) Ker(〈·, ·〉1,Hg,2k) is non empty for g > 3k. We exhibit some elements that lead to
actual elements of Mod(Σg,1) in Ker(ρ1,2k) (Prop. 4.8).

• (G = Hg, n = 1) There are twisted transvection formulas relating the homological actions of separat-
ing Dehn twists and the twisted intersection pairing (Prop. 4.2). They induce a criterion for images
of two separating Dehn twists by the homological representation to be different, expressed in terms
of how they cut the surface into connected components (Prop. 4.4).

• (G = Hg,2k, n > 1) Ker(〈·, ·〉n,Hg,2k) is non empty for g > k. (Prop. 5.1).
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In [La90], R. Lawrence has invented representations of braid groups (denoted Lm,n in (1.1)), seen as
mapping class groups, on twisted homologies of punctured disks. They have very much inspired the present
constructions, even more since Bigelow has proved their faithfulness in [Big00] by analyzing their associ-
ated twisted intersection pairings. We note that there are subgroups of Mod(Σg,1) isomorphic to braid

groups, on which one can study the restriction of the representations ρ
Hg
n , or subrepresentations of those

restrictions. Section 6 aims at recognizing such braid subgroups representations as Lawrence representa-

tions. Theorem 6.3 states that ρ
Hg
n restricted to some (pure) braid subgroup with g strands of Mod(Σg,1)

that is generated by separating Dehn twists is isomorphic to a specialization of the Lawrence representation
Lg,n built from homologies of Confn(Dg), with coefficients in a ring with one variable. Theorem 6.8 shows

that the restriction of ρ
Hg
n to another pure braid subgroup of Mod(Σg,1) with g strands is isomorphic to

a full Lawrence representation Lg,n, and Corollary 6.9 that ρ
Hg
n restricted to this subgroup is faithful for

n > 1. Finally, we also find a pure braid subgroup of Mod(Σg,1) this time on 2g strands generated by both

separating and non separating twists and we show that its action via a restriction of ρ
Hg
n is isomorphic to an

evaluation of Lawrence representation in a ring with g + 1 variables (Theorem 6.12).

Theorem 1.6. • (Sec. 6.1) There is a subgroup of Mod(Σg,1) isomorphic to a pure braid group on g

strands that is generated by separating Dehn twists, and such that restricting ρ
Hg
n to it recovers the

representation Lg,n evaluated at s = σ−2.

• (Sec. 6.2) There is a pure braid subgroup on g strands of Mod(Σg,1). The restriction of ρ
Hg
n to it is

fully isomorphic to Lg,m. For n > 1 this restriction is faithful (Coro. 6.9).
• (Sec. 6.3) There is a subgroup of Mod(Σg,1) isomorphic to a pure braid group on 2g strands, such

that restricting ρ
Hg
n to it recovers the representation Lg,n evaluated in a ring of Laurent polynomials

with g + 1 variables (Theorem 6.12).

Acknowledgments. Both authors thank Q. Faes for helpful discussions, and I. Agol for helping with the
proof of Lemma 3.9. Most of this work was done during the one year journey of the second author in Dijon.
Both authors were supported by the ANR project AlMaRe (ANR-19-CE40-0001-01), and the first author
also by the project ”CLICQ” of Région Bourgogne-Franche Comté.

2. Constructions of homological representations

2.1. Crossed and uncrossed representations on twisted homologies.

Definition 2.1 (Isotopic actions). Let G be a group, let X be a manifold and let x ∈ X be a base point.
We say G isotopically acts on X if there is a morphism G 7−→ Mod(X,x), where Mod(X,x) is the group of
homeomorphisms of X fixing x up to isotopies fixing x.

Although we can state our constructions at this degree of generality, to be more concrete, we will later
only consider the case G = Mod(Σ) where Σ is a surface possibly with boundary and punctures. We keep in
mind the following examples of isotopic actions.

Example 2.2. (1) The action of the mapping class group Mod(Σg,n) of a compact oriented surface Σg,n
of genus g with n ≥ 1 boundary components on X = Σg,n itself, with base point an arbitrary point
x ∈ ∂Σg,n.

(2) The action of Mod(Σ) (where Σ has non-empty boundary) on the space of unordered configurations
in Σ :

(6) X = Confn(Σ) := {{z1, . . . , zn} ⊂ Σ|zi 6= zj}
with base point x being the set x = {x1, . . . , xn} where each xi ∈ ∂Σ. Here, the action of Homeo(Σ)

is extended coordinate by coordinate to Confn(Σ), as well as isotopies, which provides the isotopic
action of Mod(Σ) on Confn(Σ).

(3) The action of Mod(Σ), where Σ is a surface with non-empty boundary on either U(Σ), T ∗(Σ), PU(Σ), PT (Σ),
where U(Σ), T ∗(Σ) are respectively the unit tangent bundle and the non-zero tangent bundle of Σ
(the fiber over any point of Σ is the set of non-zero tangent vectors at this point), and PU(Σ), PT (Σ)
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are their respective projective versions. For the case of tangent bundles, we consider the smooth ver-
sion of the mapping class group. Note that to consider the unit tangent bundle, one needs to make
an arbitrary choice of a Riemann structure on Σ, and the actions corresponding to different choices
will be homotopic. The base point can be taken to be any ~x = (x, v) ∈ U(∂Σ), T ∗(∂Σ), PU(∂Σ) or
PT (∂Σ). One could also replace Σ by its configuration spaces in all of the above bundles.

The isotopic action of G on X induces a map G 7−→ Aut(π1(X,x)). Let N be a normal subgroup of
π1(X,x).

(H) We make the assumption that N is stable under the action of G.
We give examples for such an N .

Example 2.3. (1) X is any CW -complex on which G isotopically acts and N is a characteristic sub-
group of π1(X,x) (hence stable by any automorphism).

(2) A special case of characteristic subgroup is N = Γkπ1(X,x), where ΓkH = [H, [H, [. . . , [H,H]]]]
stands for the k-th element of the lower central series of a group H.

(3) Let G = Mod(Σg,1) be the mapping class group of a compact oriented surface with genus g and 1
boundary component and X = Confn(Σg,1). In [BGG11, BPS21, DPS, DrMa] one finds morphisms
π1(Confn(Σg,1)) 7−→ Hg where Hg is the Heisenberg group:

(7) Hg = 〈a1, b1, . . . , ag, bg, σ|[ai, aj ], [bi, bj ], [σ, ai], [σ, bi], [ai, bj ]σ−2δij 〉.
The kernel is proved to be stable under the Mod(Σg,1) action for any n ≥ 2. This example is central

in this paper and rigorously (re)constructed in Sec. 2.3.

Let G := π1(X,x)/N and XG be the regular cover of X corresponding to the subgroup N / π1(X,x). It

can be thought as the universal cover X̃ of X endowed with a π1(X,x)-action (by precomposition of paths)
that is modded out by the action of N . The group of deck transformations for XG is then isomorphic to G.
Since N is stabilized by any f ∈ G (see (H)), any homeomorphism f induces a homeomorphism fG of XG

(it is precisely the lifting property for regular covers). Moreover, any two homotopic f, g induce homotopic
homeomorphisms of XG. Furthermore, looking at actions on π1’s, we get a morphism:

G 7−→ Aut(π1(X)/N) ∼= Aut(G)
f 7−→ f∗

By functoriality of the homology, fG induces a map on H∗(XG,Z) that we still denote fG by abuse of
notation. The deck transformations give H∗(XG,Z) the structure of a Z[G]-module, but the map fG is not
a morphism of Z[G]-modules in general, rather it satisfies:

(8) fG(g · x) = f∗(g) · fG(x).

Let KG := Ker(G → Aut(G)). If f ∈ KG then fG yields a morphism of Z[G]-modules on H∗(XG,Z)
(straightforward from the above Property (8)). Therefore, there is a map:

(9)
ρG : KG / G 7−→ AutZ[G](H∗(XG,Z))

f 7−→ fG

If furthermore H∗(XG,Z) is a free Z[G]-module, up to a choice of basis the automorphism group on the right
hand side is identified with GLN (Z[G]). For B = {e1, . . . , eN} a Z[G]-basis of H∗(XG,Z), the identification
is

f −→ MatB(f)

where MatB(f) = a∗ij where aij is the coefficient of f(ej) in ei, and ∗ is the anti-involution on Z[G] sending

g ∈ G to g−1.
The above defined ρG is a Z[G]-representation of KG while the action of G on H∗(XG,Z) is only a

crossed representation. The following proposition presents a tautological way to uncross these isotopic
representations on twisted homologies when the homology is a free module.
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Proposition 2.4 (Uncross homological representations). Assume H∗(XG,Z) is a free Z[G]-module with a
given basis B = {e1, . . . , eN}. Let also MG = Im(G → Aut(G)). For f ∈ G, we define ρ̃G(f) ∈ GLN (Z[G o
MG]) by the following formula:

ρ̃G(f) = MatB(fG)(f∗IN ).

Then ρ̃G is a representation of G that coincides with ρG on KG. Furthermore, Ker(ρ̃G) = Ker(ρG)

Proof. From fG(g · x) = f∗(g) · fG(x), we have

MatB((fg)G) = MatB(fG)MatB(gG)f∗

where for ψ ∈ Aut(G) and M ∈ GLN (Z[G]), the matrix Mψ is obtained by applying ψ to all coefficients of
M (this multiplication rule justifies the name of crossed representation). Note that

MatB(gG)f∗ = (f∗IN )MatB(gG)(f−1
∗ IN )

as a composition of matrices in GLN (Z[GoMG]). Hence we get

ρ̃G(fg) = MatB(fGgG)((fg)∗IN )

= MatB(fG)(f∗IN )MatB(gG)(f−1
∗ IN )((fg)∗IN )

= ρ̃G(f)ρ̃G(g).

The definition clearly implies that ρG = ρ̃G on KG, by definition of KG. Finally, to get that Ker(ρ̃G) =
Ker(ρG), it suffices to show that Ker(ρ̃G) is a subgroup of KG. Notice that ρ̃G(f) ∈ GLN (Z[G]) if and only
if f∗ = 1, which proves the claim. �

The kind of representations we get here differ from the classical notion of linear representations of groups,
since a linear representation of G is typically defined to be a representation G → GLN (K) where K is a field
(often K = C). Here we allow the coefficients of the representation to lie in a group algebra Z[G], with
the typical assumption that G will be a simpler group than G. It is for example possible to recover linear
representations over C of G from linear representations over C of G.

Proposition 2.5. Let ρ̃G be a representation of G as described in Theorem 2.4. Let ι : GoMG 7−→ GL(V )
be a finite dimensional C-representation of G o MG, that is naturally extended to an algebra morphism
ι : Z[GoMG] 7−→ End(V ). Let us define

ρ̃V :
G 7−→ GL(V ⊗N )
g 7−→ ι (ρG(g))

,

hence ρV is a C-linear representation of G. Moreover:

(i) If ι(m) /∈ ι(Z[G]) for any m 6= 1 ∈MG, then Ker(ρ̃V ) is a subgroup of KG.
(ii) If furthermore ι is a faithful representation Z[G] 7→ End(V ), then Ker(ρ̃V ) = Ker(ρ̃G).

Proof. The fact that ρ̃V is a C representation of G follows from the fact that ρ̃G is a representation of G and
ι is an algebra morphism Z[G] 7→ End(V ).

Next, assume that form ∈MG, ι(m) ∈ ι(Z[G])⇒ m = 1. Let g ∈ G, we have ρ̃V (g) = ι(MatB((fG)∗)(ι(ψG(g))IN ).
If g ∈ Ker(ρ̃V ), then the coefficients of ρ̃V (g) are in ι(Z[G]), so ψG(g) = 1 and g ∈ KG.

Finally, if furthermore ι is faithful over Z[G], then ρ̃V restricted to KG has the same kernel as ρG, so
Ker(ρ̃V ) = Ker(ρ̃G) since both kernels are included in KG. �

Remark 2.6. (Persistence of the kernel)

(1) The condition (ii) in Proposition 2.5 is stronger than asking that ι is faithful as a representation
G→ GL(V ).

(2) When (ii) is satisfied, we will say that the representation ι has the natural persistence of the kernel
property. Note that it is a priori possible that a linearization of the representations ρG keeps the
same kernel even when this property is not satisfied.
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2.2. Twisted homologies of configuration spaces and structure. Now we focus on the particular case
where X is the configuration space of a surface with one boundary. Let ϕ : π1(Confn(Σg,1)) → G an onto

group morphism. We will denote Ĉonfn(Σg,1) the associated regular cover to simplify notation. In this
section we study the structure of:

HBM
•
(
Confn(Σg,1),Confn(Σg,1)−;ϕ

)
as a Z [G]-module (where HBM

• stands for the twisted Borel–Moore relative homology). The relative part is
defined as follows:

Confn(Σ)− := {{z1, . . . , zn} ∈ Confn(Σ),∃i, zi ∈ ∂−Σ}
where ∂−Σ is an embedded interval in ∂Σ.

We first define ϕ-twisted Borel–Moore homology classes in configuration spaces from graphs supported by
a given family of non intersecting arcs of the surface Σg,1 with ends in ∂−Σg,1. We define them in general
as we will use them extensively in what follows. This section is a summary of [DrMa, Sec. 2.2] and we have
adopted their conventions.

First of all, let us denote by I = [0, 1] the unit interval, by I̊ = I r ∂I its interior. Our diagrams consist
in three inputs that we define.

Definition 2.7. A diagrammatic twisted class of Σg,1 is made of three elements:

(1) For every integer m ≥ 0, we define an m-multisimplex Γ to be an ordered family (Γ1, . . . ,Γm) of
disjoint proper embeddings Γ1, . . . ,Γm : I → Σg,1 such that Γ` embeds ∂I into ∂−Σg,1 for 1 ≤ ` ≤ m.

(2) For all integers m,n ≥ 0, we say that an ordered family k = (k1, . . . , km) ∈ Nm such that k1 +
. . . + km = n provides an m-partition of n. We label components of the m-multi-simplex using this
partition.

(3) We define a thread γ̃ of a k-labeled m-multisimplex Γ to be an ordered family (γ̃1, . . . , γ̃n) of disjoint
embeddings of I in Σg,1 such that x̃i(0) = ξi and x̃i(1) ∈ Γj for some j in such a way that there are
precisely kj of the γi’s ending in Γj.

We denote Γ
(k)
γ̃ such a diagram to show the three inputs.

Here is an example of such diagram for n = 5 and g = 1:

(10)

Now we explain how these diagrams describe a twisted relative homology class in HBM
n (Confn(Σg,1),Confn(Σg,1)−;ϕ),

for any ϕ. If one removes the red threads, the diagram still describes a relative homology class but non
twisted, i.e. in HBM

n (Confn(Σg,1),Confn(Σg,1)−;Z). Indeed, every m-multi-simplex Γ = (Γ1, . . . ,Γm),
together with an m-partition k = (k1, . . . , km) of n, induces an embedding

Γ×k : ∆k1 × . . .×∆km
Γ
k1
1 ×···×Γkmm−−−−−−−−−→ Confn(Σg,1),

where for an integer k:
∆k := {(t1, . . . , tk) ∈ Rk | 0 < t1 < . . . < tk < 1}
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is the standard open k-dimensional simplex in Rk, and if Γ is an embedded arc with ends in ∂−Σg,1, there
is a natural embedding for any integer k:

Γk : ∆k → Confk(Σg,1)
(t1, . . . , tk) 7→ {Γ(t1), . . . ,Γ(tn)}.

If one thinks about ∆k being the (ordered) configuration space of k points in I then the image of Γk is that of
k points in the embedded interval Γ(I) (disordered afterwards). The definition of an m-multi simplex ensures

that Γk11 ×· · ·×Γkmm is well defined. As the faces of the simplices are either sent to infinity or to Confn(Σg,1)−,
then this embedding of a product of simplices defines a Borel–Moore cycle relative to Confn(Σg,1)−. Indeed,
in Borel–Moore homology, closed submanifold are cycles (even those going to infinity).

A labeled multi-simplex Γ×k yields a homology class in HBM
n (Confn(Σg,1),Confn(Σg,1)−), it remains to

use the thread to choose a lift of it to Ĉonfn(Σg,1) where p̂ : Ĉonfn(Σg,1)→ Confn(Σg,1) is the regular cover

associated with Kerϕ. A thread is a path γ̃ : I → Xn,g from ξ to an element x in the image of Γ×k. It

therefore selects a point denoted γ̂ ∈ Ĉonfn(Σg,1) in the fiber p̂−1(x).

The diagrammatic twisted class denoted Γ̂
(k)

γ̃ associated with the k-labeled m-multisimplex Γ×k threaded
by γ̃ is the homology class of the unique lift:

Γ̂
×k

: I̊n → ˆConfn(Σg,1)

of Γ×k that contains γ̂. We refer the reader to Sec. 2.2.1 of [DrMa] for more details on these diagrammatic
notations for homology classes.

Using previous diagrammatic notation, we define the following particular classes in HBM
• (Confn(Σg,1),Confn(Σg,1)−;ϕ):

Γ̂(a, b) :=

where a = (a1, . . . , ag), b = (b1, . . . , bg) ∈ N×g are such that a1 + b1 + . . .+ ag + bg = n. We can now derive
the structure of twisted homologies.

Theorem 2.8 (Structure of twisted homologies, [Big04, Ma20, BPS21, DrMa]). The Borel–Moore twisted

homology modules are free, concentrated in middle dimension. Namely HBM
• (Confn(Σg,1),Confn(Σg,1)−;ϕ)

is free as a Z [G]-module, and trivial in other dimensions than n. In dim. n, it admits the following set as
basis {

Γ̂(a, b)

∣∣∣∣∣ a = (a1, . . . , ag), b = (b1, . . . , bg) ∈ N×g
a1 + b1 + . . .+ ag + bg = n

}
.

Notice that the above theorem works for any such ϕ without further assumption.

2.3. The Heisenberg twisted case.

2.3.1. Heisenberg local systems. Now we focus on Example 2.3 (3) where the morphism used to twist the
homology involves the Heisenberg groups associated with a surface and explicitly defined in Equation (3) by
its presentation. We detail this case and its quotients of particular interest in this paper. Notice that this
particular case of local system is also considered in [BPS21, DrMa].

Notation 1 (Heisenberg local systems). We fix the following notation for the fundamental group of config-
uration spaces of positive genus surfaces, for n, g ∈ N:

πn,g := π1 (Confn(Σg,1), {ξ1, . . . , ξn})
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where Σg,1 stands for the surface of genus g with one boundary component, and {ξ1, . . . , ξn} is a base point
of Confn(Σg,1) chosen so that coordinates ξi’s lie in the boundary of the surface (see the picture below).
This group is usually designated as the braid group with n strands, of the surface of genus g. We refer the
reader to [BGG11] for a proof that πn,g is generated by the following three types of braids, for 1 ≤ k ≤ g and
1 ≤ k < n:

1 gi. . . . . .

ai

1 i. . . . . .
bi

. . . . . .
σi

1 i g 1

i i1 1

g gi

g g

where red dots mean trivial paths, namely a point staying at its place at all time of the path, and red paths
display the movie of the path. We refer the reader to the more detailed Sec. 2.1.1 of [DrMa] that use same
pictures. There exists the following morphism [BGG11, BPS21, DrMa]:

(11) ϕHg
n :

πn,g −→ Hg = 〈a1, b1, . . . , ag, bg, σ|[ai, aj ], [bi, bj ], [σ, ai], [σ, bi], [ai, bj ]σ−2δij 〉
(αi, βi) 7→ (ai, bi), for i = 1, . . . , g
σi 7→ σ for i = 1, . . . , n− 1.

For an integer r ∈ N, we fix notation for the following quotients of the Heisenberg group:

Hg,r :=Hg
/
〈σr〉(12)

Hg,r :=Hg
/
〈σr, ari , bri , i = 1, . . . , g〉,(13)

We designate them respectively the Heisenberg group modulo r and the finite Heisenberg group (modulo r).

We denote by ϕn,r and ϕn,r the composition of ϕ
Hg
n with projection onto resp. Hg,r and Hg,r. We introduce

the following notations for the corresponding relative twisted homology modules of configuration spaces:

Hn := HBM
n

(
Confn(Σg,1),Confn(Σg,1)−;ϕHg

n

)
(14)

Hn,r := HBM
n

(
Confn(Σg,1),Confn(Σg,1)−;ϕn,r

)
(15)

Hn,r := HBM
n

(
Confn(Σg,1),Confn(Σg,1)−;ϕn,r

)
.(16)

In [BGG11, BPS21, DrMa] it is shown that the isotopic action of Mod(Σ) on Confn(Σ) stabilizes the

kernel of the morphism ϕ
Hg
n (and hence of ϕn,r and ϕn,r) . Namely ϕ

Hg
n satisfies (H).

The case n = 1 in the above notation deserves a particular treatment as π1,g is simply π1(Σg,1, ξ1) and does
not have any σi as a generator. Nevertheless, note that we have an embedding π1(Σg,1) → π2,g where γ is
mapped to {γ, ξ2}. It is clear that the image of π1(Σg,1) is stable under the Mod(Σg,1) action. Alternatively,
we note that the Heisenberg group can be defined as the following natural quotient of π1(Σg,1)× Z :

Proposition 2.9. We have the following isomorphism:

Hg ' π1(Σg,1)× 〈σ〉/〈[α, β] = σ2ω(α,β), ∀α, β ∈ π1(Σg,1)〉
where ω is the intersection form on H1(Σg,1).

Moreover, the kernel of the map

ϕ
Hg
1 : π1(Σg,1) −→ Hg

is stable under Mod(Σg,1).
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The group ring Z[Hg] is hence a quantum torus in the variable σ associated with the group H1(Σg,1)
endowed with the natural bilinear intersection form.

Proof. Let G = π1(Σg,1)×〈σ〉/〈[α, β] = σ2ω(α,β), ∀α, β ∈ π1(Σg,1)〉. It is clear from the presentation of G that

[G,G] is cyclic, generated by σ. If αi, βi is a system of standard generators of π1(Σg,1), let ai = ϕ
Hg
1 (αi) and

bi = ϕ
Hg
1 (βi). It is easy to see that the relations between the ai and bi in Hg are satisfied, since ω(αi, βi) = 1

and all other generators are represented by disjoint curves. Hence G is a quotient of Hg.
To see that G is actually isomorphic to Hg, we notice that for words α and β in the generators ai, bi of

Hg, one has again that [α, β] = σ2ω(α,β), as can be shown by a simple induction on the lengths of the words
α and β. Hence the relations in G are already relations in Hg.

Finally, it is clear that the kernel of ϕ
Hg
1 is stable under the Mod(Σ) action, since Mod(Σ) respects the

intersection form ω. �

For the following notation we step back to the following general case:

ϕ : πn,g → G,

where G could be thought of as either Hg, Hg,r or Hg,r. We recall the notation: KG := Ker(Mod →
Aut(G)) ⊂ Mod(Σg,1) and:

ρGn : KG → AutZ[G](Hn)

the non-crossed representation of KG, see Sec. 2.1. Recall also: MG := Im(Mod→ Aut(G)) ⊂ Aut(G), and:

ρ̃Gn : Mod(Σg,1)→ GLNg,n (Z [GoMG]) ,

is the uncrossed representation of Mod(Σg,1) arising from Prop. 2.4. The definition of this extension requires

Hn (resp. Hn,r or Hn,r) to be free on Z [G], see Theorem 2.8, with a given dimension Ng,n :=
(

2g+n−1
n

)
also

prescribed by the theorem.

2.3.2. Linearization of Hg and related quotients. In this subsection we study the possibilities for linearizing
Heisenberg representations of mapping class groups of surfaces. We begin with a negative result.

Proposition 2.10. Let G be a group that contains a non-abelian torsion free nilpotent subgroup. Then there
is no faithful algebra embedding ϕ : Z[G] 7−→MN (C) for any N ≥ 1.

Proof. Let N be a torsion free nilpotent subgroup of G. Since N is nilpotent and non-abelian, let k ≥ 2 so
that ΓkN = 1 and Γk−1N 6= 1. Since Γk−1N 6= 1, there exists a ∈ N, b ∈ Γk−2N so that [a, b] = σ 6= 1. Note
that σ ∈ Γk−1N, so σ commutes with a and with b.

Choose a representation ϕ : Z[G] 7−→ MN (C). We have that ϕ(σ) commutes with ϕ(a) and ϕ(b), so
any eigenspace Vλ of ϕ(σ) is stable by ϕ(a) and ϕ(b). This implies that ϕ(σ)|Vλ = [ϕ(a)|Vλ , ϕ(b)|Vλ ] is a
commutator, and therefore ϕ(σ)|Vλ has determinant 1, hence λ is a root of unity. Hence all eigenvalues
of ϕ(σ) are roots of unity. Consider N such that λN = 1 for any eigenvalue λ of σ, and k such that each
eigenvalue of σ has multiplicity at most k. Then the characteristic polynomial χϕ(σ) is a divisor of (XN−1)k,

and by Cayley-Hamilton theorem we have that (XN − 1)k is an annihilating polynomial for ϕ(σ). However
σ is of infinite order in G. Hence ϕ is not faithful over Z[G]. �

Corollary 2.11. Any representation Z[Hg]→Md(C) contains (σ2N − 1)k in its kernel for some N, k ≥ 1.

Proof. It is a consequence of Lemma 2.10 applied to G = Hg since the Heisenberg group Hg is a non-abelian
torsion free 2-nilpotent group. In the proof of Lemma 2.10 take σ to be σ2 ∈ Hg, it implies the second part
of this corollary. Hence there does not exist any faithful representation of Z [Hg] . �

Remark 2.12 (On faithfulness of Heisenberg representations). This corollary clarifies the fact that even if
one proves the representation of KHg on Hn to be faithful, it would not necessarily imply the linearity of
mapping class group, since the natural persistence of kernel Prop. 2.4 (ii) is never satisfied. .

We suggest that an alternative strategy might be to study the representation ρ
Hg,r
n which has coefficients in

Z[Hg,r], for some integer r >> g. We will see in Proposition 2.15 that Z[Hg,r] has a faithful representation
in Md(C) for some integer d.
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Next we describe a faithful representation of Hg o Aut+(Hg). Applying this to the coefficients of the

representation ρ̃
Hg
n provides a complex representation of Mod(Σg,1). We remark that the extension to Z[Hgo

Aut+(Hg)] of the representation of Hg o Aut+(Hg) will be unfaithful, due to the previous argument.
We recall that any element in Hg has a normal form: any x ∈ Hg can be written in a unique way

x =

(
g∏
i=1

amii

)(
g∏
i=1

bnii

)
σl where mi, ni, l ∈ Z. This fact (which is easily derived from the presentation)

implies that the group Hg admits a faithful representation in GLg+2(Q), obtained by mapping the element(
g∏
i=1

amii

)(
g∏
i=1

bnii

)
σl to the matrix 

1 m1 . . . mg
l
2

0 1 . . . 0 ng

0 0
. . . 0

...
0 1 n1

0 1

 .

This representation is called the tautological representation of Hg. We recall the representation ρ̃
Hg
n with

coefficients in Z[Hg o Aut+(Hg)] (recalling MHg ⊂ Aut+(G)). We would also like to study linear repre-

sentations of Hg o Aut+(Hg). It turns out that Hg o Aut+(Hg) is also a linear group. We recall that

Aut+(Hg) = H1(Σg,1,Z) o Sp2g(Z) [BPS21, Lemma 15]. Let J be the map Z2g 7−→ Z2g defined by
J(X,Y ) = (−Y,X) for X,Y ∈ Zg, so that Sp2g(Z) is the group of invertible integer matrices M that

satisfy M−1 = JMTJ−1.

Proposition 2.13 (Supra-tautological representation of the Heisenberg group). There is a unique injective
morphism ιHg : Hg o Aut+(Hg) 7−→ GL2+2g(Z) which satisfies:

- For x =

(
g∏
i=1

amii

)(
g∏
i=1

bnii

)
σl ∈ Hg,

ιHg (x) =

1 (JX)T l
0 I2g X
0 0 1

 ,

where X = (m1 . . .mgn1 . . . ng).
- For Y ∈ H1(Σg,1,Z) ' Z2g,

ιHg (Y ) =

1 0 0
0 I2g Y
0 0 1


- For M ∈ Sp2g(Z),

ιHg (M) =

1 0 0
0 M 0
0 0 1


We will call this representation the supra-tautological representation of Hg o Aut+(Hg).

Proof. We first check that the restriction of ιHg to Aut+(Hg) ' Z2g o Sp2g(Z) is a representation. It is clear

that the restriction to Sp2g(Z) and to Z2g are representations, so this follows from the fact that for M ∈
Sp2g(Z) and Y ∈ Z2g, one has

ιHg (M)ιHg (Y )ιHg (M−1) =

1 0 0
0 I2g MY
0 0 1

 = ιHg ((MY ))
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We also check that the restriction of ιHg to Hg is a representation. Indeed, it is clear that the image of σ is
central in the image of the representation, and for X,Y ∈ Z2g a direct computation shows that

ιHg (X)ιHg (Y ) = ιHg (Y )ιHg (X)ιHg (σ)2(JX)TY

which corresponds to the relations in Hg since the intersection form is expressed as ω(X,Y ) = (JX)TY.

Then, to see that ιHg is a well defined representation of Hg o Aut+(Hg), one has to check:

ιHg (f)ιHg (g)ιHg (f−1) = ιHg (f(g))

for f ∈ Aut+(Hg) and g ∈ Hg. Since Sp2g(Z) and Z2g generate Aut+(Hg) ([BPS21, Lemma 16]), we only

need to check it for f ∈ Sp2g(Z) or f ∈ Z2g.

For M ∈ Sp2g(Z) and x =

(
g∏
i=1

amii

)(
g∏
i=1

bnii

)
σl ∈ Hg, we have that

ιHg (M)ιHg (x)ιHg (M)−1 =

1 (JX)TM−1 l
0 I2g MX
0 0 1

 =

1 (JMX)T l
0 I2g MX
0 0 1

 .

For Y ∈ Z2g and x as above, we have

ιHg (Y )ιHg (x)ιHg (Y )−1 =

1 (JX)T l − (JX)TY
0 I2g X
0 0 1


This matches the action of Z2g on Hg, as −(JX)TY = (JY )TX = ω(Y,X).

Finally, we check that this is a faithful representation. Let z ∈ Hg o Aut+(Hg) which is in the kernel of
ιHg . Looking at the middle diagonal block of ιHg (z), we get that the automorphism part of z is in Z2g. Next
one can get that z ∈ Hg as the two blocks just above the diagonal are zero, and finally it is clear that ιHg is
faithful on Hg.

�

Remark 2.14. The above supra-tautological representation of Hg o Aut+(Hg) endows Hn ⊗ιHg C2+2g with
a linear action of Mod(Σg,1). It is a natural extension of Torelli group representations constructed in the
first version of [BPS21] to the entire mapping class group.

We note that while the authors were in the process of writing this paper, a new version of [BPS21] appeared.
In [BPS21, Section 4.2] a very closely related representation was defined, but the authors had discovered this
construction independently.

Proposition 2.13 provides us with a linearization of the representations ρ
Hg
n that extend to the whole

mapping class group, however the kernel does not naturally persist. However, we show that the group rings
of the groups Hg,r are linear:

Proposition 2.15. Let r ≥ 2, let V be a r-dimensional C-vector space with basis e0, . . . , er−1.
Let s1, . . . , sg, t1, . . . , tg be algebraically independent complex numbers.
There is a unique faithful morphism of algebras ιHg,r : Z[Hg,r]→ End(V ⊗g+1), defined by:

- ιHg,r (σ)(ej1 ⊗ . . .⊗ ejg ⊗ ejg+1) = ej1 ⊗ . . .⊗ ejg ⊗ ejg+1+1 where by jg+1 + 1 we mean jg+1 + 1 mod r.

- ιHg,r (ai)(ej1 ⊗ . . .⊗ ejg ⊗ ejg+1) = si(ej1 ⊗ . . .⊗ ejg ⊗ ejg+1+2ji).

- ιHg,r (bi)(ej1 ⊗ . . .⊗ ejg ⊗ ejg+1
) = ti(ej1 ⊗ . . . eji+1 ⊗ . . .⊗ ejg ⊗ ejg+1

).

Hence the vector spaces Hn,r ⊗ιHg,r V ⊗g+1 are endowed with a linear action of KHg,r with the same kernel

as the representation ρ
Hg,r
n of KHg,r upon Hn,r.

Proof. It is easily seen that ιHg,r (σr) = idV ⊗g+1 , that for any 1 ≤ i ≤ g, one has

ιHg,r (ai)ι
Hg,r (bi) = ιHg,r (σ2)ιHg,r (bi)ι

Hg,r (ai),

and that any other pair of generators of Hg,r have commuting images, which shows that ιHg,r is indeed a
representation of Hg,r. Hence we focus on showing injectivity.



ON KERNELS OF HOMOLOGICAL REPRESENTATIONS OF MAPPING CLASS GROUPS 15

Assume that ιHg,r (x) = 0 for some x =
∑

h∈Hg,r
ahh ∈ Z[Hg,r]. We recall that any element h of Hg,r

can be written in canonical form h = (
∏
anii ) (

∏
bmii )σk where ni,mi ∈ Z and 0 ≤ k < r. Let h′ =(∏

a
n′i
i

)(∏
b
m′i
i

)
σk
′

be another element of Hg,r. Now from the definition of ιHg,r notice that if for all

1 ≤ i ≤ g, one has k = k′, n′i = ni mod r and m′i = mi mod r, then ιHg,r (h) and ιHg,r (h′) are colinear.
On the other hand, if h1, . . . , ht are elements of Hg,r such that the reduction of their canonical coordinates
(ni mod r,mi mod r, k) are all different, then ιHg,r (h1), . . . , ιHg,r (ht) are linearily independent over C in
End(V ⊗g+1). Hence, it suffices to consider the case where x = x1h1 + . . . + xnhn where all the elements
h1, . . . , hn have the same canonical coordinates (ni,mi) modulo r and same coordinates k. Up to multiplying
by an element of Hg,r, it suffices to consider the case where x is a Z linear combination of elements of the
form (

∏
arnii ) (

∏
brmii ) where ni,mi ∈ Z.

Now, notice that

ιHg,r
((∏

arnii

)(∏
brmii

))
=
(∏

srnii

)(∏
trmii

)
idV ⊗g+1

As the si, ti are algebraically independent, it shows that ιHg,r (x) = 0 implies that x = 0. �

For the above representation of Hg,r to extend to Hg,roMHg,r and hence to obtain linear representations
of the entire mapping class group, a solution is studied in [DrMa]. The result is a projective representation
of the Torelli group (that can be unprojectivized using the adjoint action). In [DrMa] it is shown that
the obtained representations arise from non semi-simple topological quantum field theories. In the more
particular case of the finite Heisenberg group, the extension is even more natural. However they use the
unique irreducible representation of Hg in dimension rg while the above has a greater dimension and is not
irreducible.

Remark 2.16. For G a finite group, the regular representation is a faithful representation of Z[G], hence
Hg,r and Hg,r o Aut+(Hg,r) admit faithful representations of their group rings. Alternatively, a faithful

representation of Hg,r can be obtained by the previous construction setting si = ti = 1. To get a faithful

representation of Hg,r o Aut+(Hg,r), one can simply construct the induced representation.

A closely related linearization of Hg,r was considered in [DrMa].

The conclusion of this section is that if one shows the representation of KHg on Hn is faithful, a further
argument is required to deduce the linearity of Mod(Σg,1), even though the supratautological linearization
provides linear representations built out of a faithful linearization of Hg. However, obtaining the faithfulness
of the action on Hn,r would imply linearity of KHg,r .

2.4. An extension of ρ
Hg
1 to closed surfaces. In this section, we will construct a version of the represen-

tations ρ1 from previous section which will be a representation of (a subgroup of) the mapping class group
of a closed surface Σg of genus g. The idea is to make use of the Birman exact sequence [Bir, FM]:

(17) 1 −→ π1(Σg, ∗)
push−→ Mod(Σg, ∗)

r−→ Mod(Σg) −→ 1

Here, Mod(Σg, ∗) is the mapping class group of Σg with a base point ∗, namely defined from homeomorphisms
fixing ∗. We recall that the map r is the forgetful map which sends isotopy classes of homeomorphisms fixing
the base point to isotopy classes of homeomorphisms. The map push is called the point-pushing morphism
and it sends an element x ∈ π1(Σg, ∗) to a mapping class in Mod(Σg, ∗) for which the induced action on
π1(Σg) is the conjugation by x.

We also need to restrict ρ
Hg
1 to the absolute homology. Let Σ̂g,1 be the cover of Σg,1 associated to the

morphism ϕ
Hg
1 . Let

H′1 = H1(Σg,1, ϕ
Hg
1 )

be the absolute homology (as opposed to H1 which is the homology relative to ∂−Σg,1). Notice that the
absolute homology is embedded in the relative one since in the long exact sequence of the pair, the term
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H1(∂−Σg,1) is trivial. We note that this subspace H′1 is fixed by any element in Mod(Σg,1), and has a natural

structure of Z[Hg]-module. This defines, by restriction of ρ
Hg
1 to H′1:

ρ
′Hg
1 : KHg → AutZ[Hg ](H′1).

We also recall that the mapping class group of Σg with a puncture ∗ that is involved in (17) is related to
Mod(Σg,1) by the following:

(18) Mod(Σg, ∗) = Mod(Σg,1)/〈τδ〉,
where τδ denotes the Dehn twist along a simple closed curve δ which is parallel to the boundary component
of Σg,1. We let KHg ⊂ Mod(Σg, ∗) be the image of KHg ⊂ Mod(Σg,1) under the quotient (18), and K ′Hg :=

r(KHg ) be the corresponding subgroup of Mod(Σg), where r is involved in (17). Let us define

(19) PAutZ[Hg ](H′1) := AutZ[Hg ](H′1)/{σkidH′1 , k ∈ Z}.
Notice that since any [γ] ∈ H1(Σg,1,Hg) can be isotoped to be disjoint and in the interior of δ, we have:

ρ
Hg
1 (τδ) = σ−2gidH′1

as a consequence of Proposition 4.2 that will be established later on. It shows that the representation ρ
′Hg
1

descends to:

(20) ρ
′Hg
1 : KHg → PAutZ[Hg ](H′1).

Next we show that it also descends to a representation of K ′Hg .

Let push(x) ∈ p(π1(Σg)) be an element of Mod(Σg, ∗). Notice that it has a homeomorphism representative
fixing a small neighborhood of ∗ and hence can be regarded as an element of Mod(Σg,1) still denoted push(x)
by abuse of notation. It is an element of Mod(Σg,1) in the preimage of push(x) by (18). We look at the

action of push(x) on H′1. Let [γ] ∈ H′1, where γ represents a closed loop in Σ̂g, the regular cover defined from

ϕ
Hg
1 . By standard Fox calculus, we get:

ρ
′Hg
1 (push(x))([γ]) = [xγx−1] = [x] + ϕ

Hg
1 (x)[γ]− ϕHg

1 (xγx−1)[x] = ϕ
Hg
1 (x)[γ]

since γ ∈ Kerϕ
Hg
1 and xγx−1 ∈ 〈σk, k ∈ Z〉. So push(x) is sent to ϕ

Hg
1 (x)idH′1 by ρ

′Hg
1 .

Now let us take f ∈ K ′Hg . Choose a lift of f in Mod(Σg, ∗). Note that two different choices of lift differ by

an element of push(π1(Σg))∩KHg . Since the automorphism of Hg induced by push(x) is the conjugation by

ϕ
Hg
1 (x), we have that push(x) ∈ KHg if and only if ϕ

Hg
1 (x) ∈ Z(Hg) = 〈σ〉. Therefore we get the following

proposition.

Proposition 2.17. The action of Mod(Σg,1) on H′1 induces a representation of K ′Hg ⊂ Mod(Σg) :

ρ
′Hg
1 : K ′Hg −→ PAutZ[Hg ](H′1).

Remark 2.18. (1) We note that the above construction may also be used to construct a version of the
Magnus representation for the Torelli group of closed surfaces. Let us write

Hab1 := H1(Σ̂g,1,Z),

where Σ̂g,1 is the maximal abelian cover of Σg,1. Cover transformations give Hab1 the structure of a
Z[H1(Σg,1,Z)]-module. The (absolute) Magnus representation is the natural representation

ρab1 : I(Σg,1) −→ AutZ[H1(Σg,1,Z)](Hab1 ).

Note that the twist along the boundary component is in the kernel of this representation, hence
we can think of it as a representation of I(Σg, ∗) instead. Moreover, any element of π1(Σg) is
sent by the point-pushing map to an element of I(Σg, ∗). Those elements are sent by ρab1 to maps
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of the form hidHab1 , where h ∈ H1(Σg,Z). We write PAutZ[H1(Σg,1,Z)](Hab1 ) to be the quotient of

PAutZ[H1(Σg,1,Z)](Hab1 ) by such elements. Similarly to the discussion before, we get a representation

ρ′ ab
1 : I(Σg)→ PAutZ[H1(Σg,1)](H1(Σg,1; ab))

where ab : π1(Σg,1) → H1(Σg,1) is the Magnus local system. The authors do not know if this
representation has appeared anywhere else in the litterature.

(2) We note that Suzuki has found elements in the kernel of Magnus representations for g ≥ 2, as
commutators of Dehn twists along separating curves in Σg,1 for which the geometric intersection is
non zero but the twisted intersection form vanishes. We note that the elements found in [Su05b] for
g = 2 would not yield elements in the kernel of our representation ρ′ab1 : indeed, if we fill the boundary
component, then the two curves found by Suzuki have now zero geometric intersection. Therefore we
ask:

Question 2.19. Is the representation ρ′ab1 faithful for g = 2?

A positive answer would give an independent proof of the linearity of the mapping class group
of a closed surface of genus 2, which is known by Bigelow and Budney [BB01], using Lawrence
representations.

(3) Compared to the representation ρ
Hg
1 the added issue is that the Z[Hg]-module H′1 may not be free. For

example, it is known that the first homology of the maximal abelian cover of a surface Σg of genus
g ≥ 2 is not free over Z[H1(Σg)]. However, there might still be some stable submodule M ⊂ H′1, such
that either M is free or H′1/M is free. This is the case for the homology of the maximal abelian cover,
see [Put, Theorem E and F]. Moreover in general, notice that the Poincaré duality for manifolds with
boundary shows:

H′1 ' H1(Σg,1, ∂Σg,1, ϕ
Hg
1 ),

while finding a CW -complex adapted to twisted homologies is doable for the relative to the boundary
case. In configuration spaces and Borel–Moore homology, it was done in [BMW22] for the non twisted
case, and in [G24] for the case of punctured disks. This could help finding a basis of the free part of
H′1.

3. Intersection form and faithfulness criterion

3.1. Twisted intersection form. In this section, for g > 0, we construct an intersection pairing for the
twisted homology with coefficients in G for an arbitrary local system on Confn(Σg,1):

ϕ : πn,g → G.

Of course G will later be Hg (or Hg,r and Hg,r). We use the notationHn for the twisted homology constructed
in this case, even though we usually use this notation for the precise case G = Hg. This abusive notation is
adopted for all this section. We want to define a bilinear (intersection) form on spaces Hn. Poincaré duality
for manifolds with boundary does not provide self dualities. We thus define the space:

H†n := Hn

(
Confn(Σg,1),Conf+

n (Σg,1);ϕ
)
,

where:
Conf+

n (Σg,1) := {{z1, . . . , zn} ∈ Confn(Σg,1)|∃i, zi ∈ ∂+Σg,1}
where ∂+Σg,1 is the complement of ∂−Σg,1 in ∂Σg,1. We highlight the fact that this new notation involves
standard singular homologies rather than Borel–Moore ones.

Now for (c, d) ∈ Hn×H†n we can assume they can be represented by a pair of chains still denoted c and d

where c is a chain of the pair
(

Ĉonfn(Σg,1), p̂−1(Conf−n (Σg,1)
)

and d one of the pair
(

Ĉonfn(Σg,1), p̂−1(Conf+
n (Σg,1)

)
that are in a generic transversal intersection position so that they have a finite number of intersection points
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(recalling both are middle dimension chains of Confn(Σg,1)). This is thanks to the fact that d must be com-
pactly supported, c is locally finite for the ambient topology (natural consequence of being a Borel–Moore
chain) and that c and d are disjoint in a neighborhood of the boundary of ∂ Confn(Σg,1). We define:

〈·, ·〉ϕ : Hn ×H†n → Z[G]
(c, d) 7→

∑
h∈G〈c, h · d〉h

where:
〈·, ·〉 : Hn ×H†n → Z

is the usual Z-bilinear algebraic intersection form, existing since an orientation of Confn(Σg,1) determines
one on any of its regular cover. We omit the dependence in n in the notation when no confusion arises. For
the above sum to be finite, one of the two classes involved must be compactly supported which motivates
the choice of the standard homology for the dual homology H†n.

Proposition 3.1. The intersection form 〈·, ·〉ϕ has the following properties:

(1) It is preserved by the action of the group KG := Ker(Mod(Σg,1)→ Aut(G)), i.e. for f ∈ KG:

〈ρGn (f)(c), ρGn (f)(d)〉ϕ = 〈c, d〉ϕ.
(2) One has:

ε (〈c, d〉ϕ) = 〈p̂(c), p̂(d)〉
where ε : Z[G] → Z is the augmentation morphism and p̂ is the regular cover map associated with
πn,g → G.

Proof. Let f̂ be a homeomorphism of Confn(Σg,1) that projects to an element f with isotopy class in KG.
Then:

〈ρn(f)(c), ρn(f)(d)〉ϕ =
∑
h∈G

〈f̂(c), h · f̂(d)〉h =
∑
h∈G

〈f̂(c), f̂(h · d)〉h = 〈c, d〉ϕ

the second equality relying on the fact that f̂ commutes with that of the deck transformations group G
which is by definition of KG, the third one is the algebraic intersection number that is typically preserved
by orientation preserving homeomorphisms. It proves the first item.

As for the last item, let us note that intersection points of p̂(c) and p̂(d) lift to G-orbits of intersection
points between c and translates of d by cover transformations. Moreover, the augmentation morphism
transform the contributions of those intersection points to 〈c, d〉 (belonging to ±G ⊂ Z[G]) into signs, thus
recovering the algebraic intersection. �

This pairing could be interpreted in terms of twisted Poincaré duality, and it is non degenerate, which is
the purpose of next section.

3.2. Dual families and non degeneracy. In Sec. 2.2 we have defined twisted diagrammatic classes in Hn
from three inputs: a family of arcs called an m-multisimplex, a partition of m and a thread. In this section
we define another kind of twisted diagrammatic classes lying in H†n. Let k = (k1, . . . , km) be a partition of
n and Γ = (Γ1, . . . ,Γm) a family of m disjoint arcs with ends in ∂+Σg,1. Let’s assume for commodity that
Γ1 has an end in ξ1, and every Γi has an end in ξk1+...+ki1+1. we define the k-parallelized Γ to be:

Γ[k] := (Γ1(1), . . . ,Γ1(k1),Γ2(1), . . . ,Γ2(k2), . . . ,Γm(1), . . . ,Γm(km))

where Γi(1) := Γi and for 1 ≤ j ≤ ki, Γi(j) is a left-parallel of Γi(j−1) with starting end in ξk1+...+ki−1+j . By
left-parallel we mean that the arc is slightly pushed to the left (according to its orientation) staying relative to
∂+Σg,1. Here is an example showing a family of 3 disjoint arcs relative to ∂+Σ and its (2, 3, 1)-parallelization:
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1 g g. . .11 g g. . .1

Such Γ[k] is then a family of n disjoint arcs, each of them having an end in a different coordinate of the

base point. We define Γ̂
[k]

to be the unique lift to Ĉonfn(Σg,1) of the hypercube embedding:

Γ[k] : In → Confn(Σg,1),

that contains ξ̂. Notice that no thread is used to choose this lift, since Γ[k] has been chosen so to contain

the base point ξ. Since the faces of such a hypercube lies in (the lifted) Confn(Σg,1)+, then Γ̂
[k]

defines a

class in H†n. The reader should pay attention that it does not need the Borel–Moore homology, but simply
the standard singular one.

Definition 3.2. Let a = (a1, . . . , ag), b = (b1, . . . , bg) ∈ Ng such that a1 + . . . + ag + b1 + . . . + bg = n.

We define the classes Γ̃
†
(a, b) in H†n as the (a, b)-parallelization of the multiarc A1 ∪ . . . ∪Ag ∪B1 ∪ . . . Bg

represented below:

1 g g. . .1

A1 Ag

B1 Bg

We want to show that elements Γ̂(a, b) and Γ̂
†
(a, b) are dual for the pairing 〈·, ·〉

ϕ
Hg
n

. But first we describe

a natural protocole to compute the pairing between a twisted diagrammatic class and a parallelized family
of arcs.

Let Γ = (Γ1, . . . ,Γm) be an m-multisimplex, k = (k1, . . . , km) be a partition of n, and let Γ̂
(k)

γ̃ be

the associated class in Hn after the choice of an adapted thread γ̃. On the other side, let Γ
[k+]
+ be the

k+ = (k+,1, . . . , k+,l)-parallelized family of adapted arcs Γ+ = (Γ+,1, . . . ,Γ+,l), and Γ̂
[k+]

+ the associated

class in H†n. We explain how to compute 〈Γ̂
(k)

γ̃ , Γ̂
[k+]

+ 〉ϕ. An intersecting configuration is a configuration

{x1, . . . , xn} ∈ Confn(Σg,1) that lies in the intersection of diagrams Γ and Γ
[k+]
+ , with exactly one xi on

each of the n arcs of Γ
[k+]
+ and k1 of them on Γ1, k2 on Γ2 and so on until km of them on Γm. It is an

intersection point between Γ(k) and Γ
[k+]
+ . Let P be the set of all such intersecting points. Each intersecting

configuration x ∈ P contributes to one term of the pairing, since there exists only one point in the fiber of

x where Γ̂
(k)

γ̃ and the pre image by p̂ of Γ
[k+]
+ intersect. Hence:

〈Γ̂
(k)

γ̃ , Γ̂
[k+]

+ 〉ϕ =
∑
x∈P

εxhx,

where for a fixed x, one has εx = ±1 is the sign of the corresponding intersection in fibers, and hx ∈ G is

the unique element such that the intersection is between Γ̂
(k)

γ̃ and hx · Γ̂
[k+]

+ . Thus

εx = 〈Γ̂
(k)

γ̃ , hx · Γ̂
[k+]

+ 〉.
For a given x ∈ P we define a loop δx of Confn(Σg,1) as the following composition of paths:

• First relating ξ and x following the thread γ̃ then part of Γ (it is unique up to isotopy fixing ends),
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• Second relating x and ξ along Γ
[k+]
+ .

Lemma 3.3. One has:

(21) hx = ϕ(δx)

Proof. There exists hx ∈ G such that Γ̂
(k)

γ̃ and hx · Γ̂
[k+]

+ intersect in the fiber of x by the lifting property

of regular cover. Let’s lift the path δx to the cover Ĉonfn(Σg,1) starting at ξ̂, it is unique and denoted δ̂x.
The first part of the path is the lift of the thread so that the path reaches a point in the fiber of x lying

precisely in Γ̂
(k)

γ̃ , by definition of the thread. Then the second part of the loop lies in a lift of Γ
[k+]
+ , and

more particularly in hx · Γ̂
[k+]

+ for the hx we are seeking, by connectedness. Hence δ̂x ends at hx · ξ̂ which
proves the lemma. �

Proposition 3.4. Let (a = (a1, . . . , ag), b = (b1, . . . , bg)) and (a′ = (a′1, . . . , a
′
g), b = (b′1, . . . , b

′
g)) be two

partitions of n. One has:

〈Γ̂(a, b), Γ̂
†
(a′, b′)〉ϕ = δ(a,b),(a′,b′)

where the right term is a Kronecker symbol for lists.

Proof. The reader would easily check that if partitions (a, b) and (a′, b′) are different, there does not exist

any intersecting configuration and hence the pairing is zero. It remains to compute 〈Γ̂(a, b), Γ̂
†
(a, b)〉ϕ for

a given partition (a, b). There exists a unique intersecting configuration x, for which the loop δx is trivial
so that hx = 1. All intersections of arcs involved are positive, and δx never permutes the base point so that:

〈Γ̂(a, b), Γ̂
†
(a, b)〉ϕ = 1.

which is a direct consequence of the formula provided by [BPS21, Appendix B]. �

In other words, the above proposition means the basis:{
Γ̂(a, b)

∣∣∣∣∣ a = (a1, . . . , ag), b = (b1, . . . , bg) ∈ N×g
a1 + b1 + . . .+ ag + bg = n

}
⊂ Hn

admits {
Γ̂
†
(a, b)

∣∣∣∣∣ a = (a1, . . . , ag), b = (b1, . . . , bg) ∈ N×g
a1 + b1 + . . .+ ag + bg = n

}
⊂ H†n

as a dual family. Thus the following is a straightforward consequence of the fact that the Z[G]-module Hn
is free with a basis admitting a dual family.

Corollary 3.5. The pairing 〈·, ·〉ϕ is non degenerate on the left.

Using the fact that the Borel–Moore homology is fully concentrated in its middle dimension, and by
application of the universal coefficients spectral sequence, one can show that actually the pairing is per-
fect, however we won’t use it in the present paper. We conclude by giving a formula to compute signs of
intersections in the precise case where G = Hg. Hence, we replace ϕ by:

ϕHg
n : πn,g → Hg

and the signs εx appearing in the following lemma are only involved in the pairing 〈·, ·〉
ϕ

Hg
n

.

Lemma 3.6. One has:
εx = εx1

· · · εxnη(hx)

where εxi is the sign of intersection in Σg,1 between the arcs supporting Γ and Γ
[k+]
+ over which xi is lying,

and:
η : Hg → {±1}
g ∈ Hg 7→ 1 if g is a generator that is not σ

σ 7→ −1
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Proof. This is an immediate generalization of the formula given in [BPS21, Appendix B] �

Finally this last lemma and Lemma 3.3 imply:

(22) 〈Γ̂
(k)

γ̃ , Γ̂
[k+]

+ 〉
ϕ

Hg
n

=
∑
x∈P

εx1
· · · εxnϕHg

n (δx)|σ=−σ,

where ϕ
Hg
n (δx)|σ=−σ is the element ϕHg (δx) ∈ Hg to which we apply the involution of Z[Hg] that fixes all

generators of Hg except σ that is sent to −σ.

3.3. Alternative construction of the representations. In this paragraph, we will describe another way
of defining the homological representations. It has some similarities with the way quantum representations
of mapping class groups are constructed. Indeed, we will rebuild the representations from the data of the
twisted intersection form defined in the previous section, using the spirit of the universal construction similar
to the way Witten-Reshetikhin-Turaev representations are defined in [BHMV95]. This can be used to show
that some homological representations are isomorphic by showing that the involved pairing are isomorphic,
which is typically easier to compute (see Theorem 6.3, Theorem 6.8 and Theorem 6.12 for examples).

Let us fix a group G and a morphism ϕG : πn,g −→ G such that the kernel is preserved by Mod(Σg,1)-
action, and as in Section 2.1, let KG be the kernel of the map Mod(Σg,1) −→ Aut(G).

Let Vn be the free Z[G]-module spanned by n-diagrammatic twisted classes defined in Def. 2.7. Let V †n be
the free Z[G]-module spanned by dual n-diagrammatic classes : they are a disjoint unions of n ≥ 1 simple
arcs on Σg,1 with boundary on ∂+Σg,1. We assume each arc of such a dual twisted class has an end in one
of the ξi’s. We can define a Z[G]-linear form 〈·, ·〉G on V × V † by the formula from Equation (22). That
formula can be directly adapted to the present case by similarly defining the paths and signs involved. In
(22), it is given for a particular twisted class and a particular dual one but the definition persists.

(23) 〈Γ,Γ†〉 =
∑

x∈I(Γ,Γ†)

εxϕ
G(δx)

where I(γ, δ) stands for the n-uple of intersection points of Γ and Γ†.
The definition of 〈·, ·〉G on general elements of Vn and V †n follows by multilinearity. Notice Mod(Σg,1) has

a natural action on isotopy classes of colored (resp. dual) n-twisted classes, sending an arc to its image by
a representative homeomorphism, as the boundary is pointwise fixed by such a homeomorphism we stay in
the same class of arcs.

Proposition 3.7. The quotient Hn,g = Vn/Ker(〈·, ·〉G) of Vn by the left kernel of 〈·, ·〉G is a free Z[G]-
module isomorphic to HGn , and the natural action of Mod(Σg,1) on Hn,g induces a representation KG −→
AutZ[G](Hn,g) which is isomorphic to ρGn .

Proof. The formula 〈·, ·〉G actually computes the twisted intersection of the homology classes naturally
associated with an n-diagrammatic twisted class on the one hand and with a dual one on the other. The
dual one consists in assigning an embedding of a hypercube in (Confn(Σg,1),Conf+

n (Σg,1)) with the product

of arcs, and choosing the only lift of it containing ξ̂.
The pairing is hence invariant under ambient isotopies of diagrams. Note that one could also check this

from a direct computation from Equation 23, showing that removing a bigon between the two n-classes
does not change the form 〈·, ·〉G. (We will not attempt to do this computation). A simple restatement
of Proposition 3.1-(1) is that the current 〈·, ·〉G is equivariant under the action of Mod(Σg,1), and again
alternatively, one can see it directly from Equation 23. Since the pairing 〈·, ·〉G is non degenerate on the left
(Coro. 3.5), and since the homology classes of n-twisted classes span Hn (Theorem 2.8), the map that sends
a twisted n-class to the corresponding homology class in Hn induces an isomorphism Vn/Ker〈·, ·〉 ' Hn.
The fact that the Mod(Σg,1)-action on diagrammatic twisted n-classes induces a representation KG −→
AutZ[G](Hn) follows from the fact that 〈·, ·〉G is KG-invariant, and this representation is isomorphic to ρGn
since the matrix coefficients of ρGn (f) for any f ∈ Mod(Σg,1) are given by the intersections of the classes

f∗(Γ̂(a,b)) and Γ†(a′,b′). �
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3.4. Intersection of arcs in a surface and a faithfulness criterion. Let Γ− and Γ+ be two oriented
arcs of the surface Σg,1, the first one being relative to ∂−Σg,1 the second one relative to ∂+Σg,1. Namely
they are proper embeddings of I into Σg,1 with ends in ∂−Σg,1 resp. ∂+Σg,1. We furthermore assume Γ+

has its starting end in ξ1 the first coordinate of the base point standing in ∂+Σg,1.

For n ∈ N , we are going to assign them Γ
(n)
− and Γ

[n]
+ respectively which are classes in Hn and H†n

respectively. We define the G-twisted intersection pairing between two such arcs as follows:

〈Γ−,Γ+〉G,n := 〈Γ(n)
− ,Γ

[n]
+ 〉ϕ.

We define the classes of interest:

• The class Γ
(n)
− is the diagrammatic twisted class (Def. 2.7) made of the 1-multisimplex Γ− labeled

by n, to which we add a thread x̃Γ− that is given by the unique n-multipath going from {ξ1, . . . , ξn}
to the arc Γ− following the boundary counterclockwise.

• The class Γ
[n]
+ is the n-parallelized Γ+.

Definition 3.8. For n ∈ N, we say that the pairing of arcs 〈·, ·〉G,n is definite if we have:

∀Γ−,Γ+, 〈Γ−,Γ+〉G,n = 0 ⇐⇒ Γ− t Γ+ = 0

where Γ−,Γ+ are relative arcs as described at the beginning of this section (for which the pairing is well
defined), and Γ− t Γ+ = 0 means that both arcs have a null geometric intersection, namely they can be
isotoped off one of each other (by an isotopy fixing ends).

Roughly speaking the G-twisted intersection pairing is definite if and only if it detects the geometric
intersection between arcs. In the above definition the converse implication is easy and true for any intersection
pairing. If the intersection pairing turns out to be definite, then Theorem 3.10 below will show that the
corresponding homological representation of the mapping class group of the surface is faithful. First we need
the following lemma:

Lemma 3.9. Let Σ be a compact connected oriented surface of genus g ≥ 2.

• Let f ∈ Mod(Σ) be a non central mapping class on Σ. Then there exists a simple closed curve c such
that c t f(c) 6= 0. Moreover c can be chosen non-separating or separating of a given genus.

• If Σ = Σg,1, and f ∈ Mod(Σ) is not trivial, then there exists an arc (rel. to boundary) Γ such that
Γ t f(Γ) 6= 0. Again, Γ can be chosen non separating, or separating of any given genus.

Proof. The proof of the first point relies on curve complex machinery. Let C(Σ) be the curve graph of Σ,
(see [Har81] for a definition) and let d be the distance in the curve graph. Note that any simple closed
curve c is at distance at most 1 from a non separating (resp. separating of genus k) one c′. If d(c, f(c)) ≥ 4,
then d(c′, f(c′)) ≥ 2 by triangular inequality and the fact that f induces an isometry of C(Σ). Hence, it
is enough to show that for f non central, then d(c, f(c)) ≥ 4 for some simple closed curve c. However,
sup{d(c, f(c)) | c ∈ C(Σ)} = +∞ for any non central f ∈ Mod(Σ), see [RS11, Proof of Corollary 1.1].

For the second point, identify Σg,0 with the quotient space Σg,1/∂Σg,1. If f is not in the group generated
by the Dehn twist along the boundary (and the elliptic involution if g = 2) then f ∈ Mod(Σg,1) induces a
non central element of Mod(Σg). By the previous argument, there is a non separating curve c in Σg (resp.
separating curve of genus k, where 1 ≤ k ≤ g − 1 is fixed), such that the geometric intersection number
i(c, f(c)) is larger than 2. (indeed, it can be picked arbitrarily large). Let γ be an arc in Σg,1 that maps to
c under contraction of ∂Σg,1. Then i(γ, f(γ)) ≥ i(c, f(c))− 1 > 0 (where the −1 accounts for the new point
of intersection that might be created by contracting ∂Σg,1.)

Finally, if f is in the group generated by the Dehn twist along the boundary (and the elliptic involution
if g = 2), it is easy to produce arcs that satisfy the condition. �

Theorem 3.10. If 〈·, ·〉G,n is definite, then the action of KG ⊂ Mod(Σg,1) on Hn is faithful and its extension
to an action of Mod(Σg,1) on Hn ⊗Z[G] Z[GoMG] is too.

Proof. Let f ∈ KG be non trivial. Then there exists Γ+ an arc relative to ∂+Σg,1 such that Γ+ t f(Γ+) 6= 0,
from Lemma 3.9. One can slide Γ+ slightly along a small regular tubular neighborhood of itself in such a
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way that in the end we get an arc Γ− that is a parallel of Γ+ having the same intersection points with f(Γ+)
and such that Γ− t Γ+ = 0. Suppose f acts trivially on Hn, then one has:

0 = 〈Γ−,Γ+〉G,n = 〈f(Γ−), f(Γ+)〉G,n
= 〈Γ−, f(Γ+)〉G,n,

the first equality is Prop. 3.1, the second line is the triviality of the action of f on Hn. Then

〈Γ−, f(Γ+)〉G,n 6= 0

if the pairing is definite. It is a contradiction.
The second part of the theorem is the persistence of the kernel established in Prop. 2.4. �

The next two sections are devoted to finding elements in the kernel of the pairing, namely pairs of
intersecting arcs with G-twisted pairing zero when the surface is Σg,1.

4. The single-point case

In this section, we denote by ρ1 the representation arising from one point of configuration and the local

system determined by ϕ
Hg
1 : π1(Σg,1) −→ Hg. Similarly, we denote by ρ1,k the representation coming from

the local system ϕ
Hg,k
1 : π1(Σg,1) −→ Hg,k = Hg/〈σ2k〉. We recall that:

ρ1 : KHg → AutZ[Hg ](H1),

where H1 can be defined by the standard homology rather than Borel–Moore, since in the case of one
point, it is the homology of the surface which is compact so both homologies coincide.

The following proposition is important since many computations rely on it.

Proposition 4.1. Let γ ∈ π1(Σg,1) representing a separating simple closed curve of genus k on the surface
Σg,1. Set ε = 1 if the orientation of γ is compatible with the orientation of ∂Σg,1 and ε = −1 otherwise.
Then ϕHg (γ) = σ2εk.

In the above, the orientation of γ and ∂Σg,1 are compatible if they are both induced by the same orientation
on the connected component of Σg,1 \ γ that contains them both.

Proof. Recall that two separating simple closed curves of a given genus on Σg,1 are in the same orbit under
mapping class group action; moreover two oriented such curves are in the same mapping class group orbit if
and only if the orientation matches.

Moreover, for f ∈ Mod(Σg,1) we have ϕ
Hg
1 (f(γ)) = f∗(ϕ

Hg
1 (γ)) where f∗ is the induced automorphism of

Hg. Note that Aut+(Hg) is the identity on 〈σ〉 : therefore to prove the formula it is sufficient to verify it for
a single element in each mapping class group orbit of oriented separating simple closed curve.

We conclude noting that for each k, and for each ε ∈ {±1}, the element
(
[α−1

1 , β−1
1 ] . . . [α−1

k , β−1
k ]
)ε

represents a separating simple closed curve of genus k. Moreover, its orientation is compatible with that of
∂Σg,1 if and only if ε = 1. Then we compute

ϕHg
(
[α−1

1 , β−1
1 ] . . . [α−1

k , β−1
k ]
)

= [a−1
1 , b−1

1 ] . . . [a−1
k , b−1

k ] = σ2k,

by the presentation of Hg given in 11.
�

4.1. Action of Dehn twists: twisted-transvection formula and consequences. We first give a for-
mula for an action of a Dehn twist along a separating close curve on the homology class of a simple relative arc,
similar to Suzuki’s transvection formula for the Magnus representation of the Torelli group [Su05a, Su05b].
Let α be a separating simple closed curve, we denote by Σint(α) the surface with one boundary component
separated by α and the genus of Σint(α) by g(α). We say then that α is separating of genus g(α).

Let us consider α a separating simple closed curve of genus k, and β an arc in Σ with endpoints in ∂−Σg,1.
The arc β gives rise to a homology class [β] ∈ H1. Note that up to isotopy, we can assume that all intersection

points of β and α happen at a single point p ∈ Σg,1. We call p̂ the lift of p to Σ̂g,1 corresponding to following
the lift starting from basepoint of the first subarc of β \ {p}.
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We can decompose β into a collection of arcs, lying in the internal or external connected component of
Σg,1 \ α and with endpoints on ∂−Σg,1 or on α. Let [β] = [β]ext + [β]int be the associated decomposition in

C1(Σg,1, ∂Σg,1, ϕ
Hg
1 ).

We can also make the simple closed curve α into an arc with endpoints in ∂+Σ by opening α along an arc

left parallel to the first subarc of β \ {p}. We call the resulting arc α′. Finally, let [α] ∈ C1(Σg,1, ∂Σg,1, ϕ
Hg
1 )

be the chain corresponding to the lift of α starting at p̂.

Proposition 4.2. With the notations above, one has:

ρ1(τα)([β]) = [β]ext + σ−2k[β]int + 〈α′, β〉
ϕ

H1
1

[α].

Proof. Note that while [β] is a cycle, [β]ext and [β]int are just chains; however one has ∂[β]ext = 〈α′, β〉p̂.
Indeed the boundary of the first arc of [β]ext contributes +p̂, and subsequent arcs contribute exactly the
monomials involved in formula (22). Notice that in latter formula, εxi are here the usual sign of arc intersec-
tions while the involution σ → −σ does not change anything in the single point case since only squared σ are
involved. We also note that [α] is just a chain, but one has ∂[α] = (σ−2k − 1)p̂, since α is mapped to σ−2k

by ϕH1
1 (Prop. 4.1). Note that the preimage of the simple closed curve α in Σ̂g,1 is homeomorphic to R, and

obtained by concatenating different lifts of α (hence it is made of concatenations of translated [α]). Moreover,
a diffeomorphism representing the isotopy class of τα is obtained as the identity on Σg,1 minus an annulus
neighborhood of α, and on that annulus homeomorphic to S1× [0, 1] it acts by t-translation on S1×{t}. The
lift of the latter is the identity on the preimage of Σext(α), it translates by the cover transformation σ−2k

on the preimage of Σint(α). It remains to study its action on the preimage of the annulus (homeomorphic
to R × [0, 1]): it acts by t-translation on R × {t}. Combining this description with the formula for ∂[β]ext,
we get exactly the formula of Proposition 4.2. �

Corollary 4.3. Let α be an oriented separating simple closed curve on Σg,1 of genus k. Let τα be the
associated Dehn twist. Then for any [β] ∈ H1(Σg,1, ∂Σg,1,Hg) we have

ρ1(τα)([β]) = [β] + 〈α, β〉
ϕ

H1
1

[α] mod σ2k − 1.

In other words, as H1,2k designates the twisted homology by Hg,2k, one has:

ρ
Hg,2k
1 (τα)([β]) = [β] + 〈α, β〉

ϕ
Hg,2k
1

[α].

Proof. It is a reduction mod σ2k − 1 of Prop. 4.2. We remark that modulo σ2k − 1, the simple closed curve

α is a cycle, and equal to the α′ of Proposition 4.2. Indeed, a generator of π1(α) is sent to σ±2k via ϕ
Hg
1

thanks to Prop. 4.1. It should depend on a choice of relation to the base point, but for two different choices,
the results are conjugated, and σ is central. Hence modulo σ2k − 1 the fundamental group of α is trivialized
which is the condition to lift manifolds to the associated cover. �

Let us now consider two separating curves α1 and α2, of genera k1 and k2. We will write Σint,int(α1, α2)
for the connected components of Σ \ (α1 ∪ α2) which lies in the interior of α1 and of α2. Similarly we define
Σint,ext(α1, α2),Σext,int(α1, α2) and Σext,ext(α1, α2).

Proposition 4.4. Assume that ρ1(τα1
) = ρ1(τα2

). Then Σint,ext(α1, α2) and Σext,int(α1, α2) are unions of
disks.

Proof. Assume to the countrary that Σint,ext(α1, α2) contains a component of genus at least one. Note that

Proposition 4.2 implies that ρ1(τα1) acts by multiplication by σ−2k1 on H1(Σint(α1),Σ\Σint(α1);ϕ
Hg
1 ), while

ρ1(τα2
) acts as the identity onH1(Σext(α2),Σ\Σext(α2);ϕ

Hg
1 ). So their action differ onH1(Σint,ext(α1, α2),Σ\

Σint,ext(α1, α2);ϕ
Hg
1 ), as soon as this space is not the trivial module, which is the case if Σint,ext(α1, α2)

contains a positive genus surface (just take an arc representing a non zero homology class in that component).
�

Remark 4.5. We recall that ρ1 is faithful if and only if it distinguishes all separating Dehn twists. The
above proposition gives a strong restriction on separating simple closed curves satisfying ρ1(τα1

) = ρ1(τα2
)
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Proposition 4.6. Images of separating Dehn twists by ρ1 have infinite order

Proof. It is enough to show this for the representation ρ
Hg,1
1 , with coefficients in Hg/〈σ〉 ' H1(Σg,1). In fact,

this representation is exactly the Magnus representation.
It is a well-known fact that the image of separating Dehn twists by the Magnus representation have infinite

order. For the sake of completedness, let us give an argument using the transvection formula:
Let α be a separating closed curve in Σg,1, and γ is an arc in Σg,1 with endpoints in ∂Σg,1 then

ρ
Hg,1
1 (τα)([γ]) = [γ] + 〈γ, α〉Hg,1 [α],

and thus
ρ
Hg,1
1 (τnα )([γ]) = [γ] + n〈γ, α〉Hg,1 [α].

Therefore it suffices to show that there is an arc γ such that 〈γ, α〉 6= 0. One can realize this with an arc
that intersects α in exactly 2 points, and such that a loop formed by a subarc of γ and a subarc of α joining
those 2 points represents a non zero homology class. �

4.2. Discussions on the kernel.

4.2.1. Intersection form has kernel. As explained in Theorem 3.10, a strategy to prove faithfulness of one

of the representations ρ
Hg
n for n ≥ 1 would be to show that the associated intersection form is definite.

Unfortunately, for n = 1 we prove the contrary.

Theorem 4.7. The intersection form 〈·, ·〉Hg on H1 ×H†1 has kernel for any g ≥ 6.

Proof. An example of a pair of arcs α and β with non-zero geometric intersection but such that 〈α, β〉1,Hg = 0
is shown in Figure 1. Note that the two arcs are in minimal intersection positions by the bigon lemma since

1 2

1 1

1

g − 6

β

α

Figure 1. Two disjoint arcs on which the intersection form 〈·, ·〉Hg vanishes. The surface
Σg,1 is represented by a square with handles added. If a region is colored by an integer k,
it means that one needs to add k handles in that region. In red, the thread for β is
represented.

there is no disk in Σg,1 bounded by two subarcs of α and β. Therefore their geometric intersection number
is 8. Computing the intersection using Formula 22, we get

〈α, β〉Hg = σ−2 − σ−4 + σ−2 − 1 + σ−4 − σ−2 + 1− σ−2 = 0.

In the above computation, we have ordered the contributions of intersection points in α ∩ β following the
orientation of α. �
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We note that Long and Paton [L-P] and Bigelow [Big99] have used the kernel of the twisted intersection
pairing associated to the Burau representations to give kernel elements of the Burau representation of Bn
for n ≥ 6. The same kind of argument appears also in Suzuki’s proof [Su02, Su05b] that the Magnus
representation of the Torelli group I(Σg,1) has kernel for g ≥ 2. The argument of Suzuki uses curves α and
β that are orthogonal for the twisted intersection pairing, and a transvection formula for the action of Dehn
twists to show that [τα, τβ ] is in the kernel of the Magnus representation.

However, in the proof of Theorem 4.7, we found non-disjoint arcs α and β with zero twisted intersection.
It is not clear how to associate kernel elements of ρ1 to this pair of arcs. One might be tempted to study the
commutator [τα′ , τβ′ ] of the Dehn twists along α′, β′, which simple closed curves obtained by closing α and
β using sub-arcs of ∂Σg,1. However, we have computed that [τα′ , τβ′ ] is not in the kernel of ρ1. One issue
is that Proposition 4.2 only gives a twisted transvection formula for Dehn-twist, and the factors σ2k in the
formula prevents ρ1([τα′ , τβ′ ]) to vanish, even when the twisted intersection of α and β vanishes.

However, the above proposition shows that one can not apply Bigelow’s strategy (Theorem 3.10) in the
single point case to prove the faithfulness of the representation ρ1.

4.2.2. Kernel elements for the Heisenberg mod σ2k − 1 representation. We recall that ρ1,k stands for the
representation obtained from ρ1 by reducing coefficients mod σ2k − 1 which is equivalent to the homological
representations associated with the Hg,2k-twisted representation. We find kernel elements of this represen-
tation, provided that the genus is large enough:

Proposition 4.8. Let g ≥ 3k, then the representation ρ1,k has kernel.

kk k

β α

g − 3k

Figure 2. The images of the Dehn twists τα and τβ by ρ1,k commute

Proof. Figure 2 shows two separating curves α and β of genus 2k such that 〈α, β〉Hg,k = 0. Indeed, the two
curves have only two intersection points, which form a bigon of genus k. Applying Formula (22) easily shows
that the two contributions are +1 and −σ2k = −1, and therefore 〈α, β〉Hg,k = 0. (Here, let us note that
we make an arbitrary choice of lift and orientations of α and β, which has no effect on the vanishing of
〈α, β〉Hg,k).

Now let [γ] ∈ H1(Σg,1, ∂Σg,1,Hg,k). By Corollary 4.3 we have

ρ1,k(τατβ)([γ]) = [γ] + 〈β, γ〉Hg,k [β] + 〈α, γ〉Hg,k [α] + 〈β, γ〉Hg,k〈α, β〉Hg,k [α].

Since 〈α, β〉Hg,k = 0, and since the only non symmetric term in α, β in the above formula factors by 〈α, β〉Hg,k ,
we get that ρ1,k(τατβ) = ρ1,k(τβτα). Thus [τα, τβ ] ∈ Kerρ1,k. We recall that Dehn twists along curves with
positive geometric intersection never commute in the mapping class group, hence ρ1,k is not faithful. �

5. The several-points case

5.1. Kernel in the intersection form mod σ2k, where k < g. In this section, we show that the twisted
intersection form on Hn,2k is not definite for any n ≥ 1 and any k < g. Indeed, we have:
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Proposition 5.1. Let α and β be two arcs in Σg,1 with endpoints in ∂Σ−g,1 and ∂Σ+
g,1 respectively. Let

α(n) ∈ Hn,2k and β[n] ∈ H†n,2k be the associated homology classes.
Assume that α and β meet in exactly two points, and that there are arcs a of α and b of β such that

the bigon a ∪ b is a separating simple closed curve of genus d, where d divides k. Then 〈α(n), β[n]〉Hg,2k = 0,
although α and β have non-zero geometric intersection.

Proof. The fact that α and β have non-zero geometric intersection follows from the bigon lemma [FM, Propo-
sition 1.7]. To show that 〈α(n), β[n]〉Hg,2k = 0, notice that by Equation 22, the intersection 〈α(n), β[n]〉Hg,2k
is the same as the intersection 〈α(n), β′[n]〉Hg,2k where β′ is an arc obtained from β by replacing the subarc
b by an arc parallel to a (while keeping the same two intersection points between α and β′ as those between
α and β). Indeed, for any x, a n-uple of intersection points between α and the n-th parallelization of β or
β′, the loop δ′x that appears in Equation 22 for 〈α(n), β′[n]〉Hg,2k is obtained from δx by inserting loops that

have one point going along a ∪ b and all other configuration points constant. These loops are sent to σ±2d

by the same argument as Proposition 4.1. Since σ is central in Hg and we are working modulo σ2k − 1, we
get:

ϕ
Hg,2k
n (δx) = ϕ

Hg,2k
n (δ′x),

for any such x, and therefore:

〈α(n), β′[n]〉Hg,2k = 〈α(n), β′[n]〉Hg,2k = 0,

since 〈α(n), β′[n]〉Hg,2k depends only on the isotopy classes (rel. boundary) of α and β′ and α and β′ can be
isotoped to be disjoint. �

Remark 5.2. The proof of Proposition 5.1 shows that many more examples of geometrically intersecting
pairs of arcs (α, β) with vanishing twisted intersection 〈α(n), β[n]〉Hg,2k can be constructed. For instance, one
could assume α and β to intersect so that they form m ”bigons” with genus d1, . . . , dm, where all di divide
k.

5.2. A simplified formula for the n points intersection form. Next, we give a formula that simplifies
the computation of the twisted intersection form on Hn for n > 2, for some specific types of arcs. We will fix
a g-holed sphere S embedded in Σg,1 so that Σg,1 is the union of S and g one-holed tori. We will compute

〈α(n), β[n]〉 when α(n) ∈ Hn and β[n] ∈ H†n are homology classes associated to two oriented separating arcs α
and β, with the added assumption that α and β belong to the g-holed sphere S. Because of this assumption,
any loop in Σg,1 consisting of a subarc of α and a subarc of β will be separating.

Let x0, x1, . . . , xk−1 be the points of intersection of α and β, where the label corresponds to their order
on α. We will assume that the sign of x0 as an intersection point α and β is +1. We will also consider
intersection points of α with a 2-parallel cable β[2] of β, in which case we will write x0, . . . , xk−1 for the
intersection points of α with the left component of β[2] and x0, . . . , xk−1 for the intersection points with the
right component of β[2]. We recall that a basepoint ξ = {ξ1, . . . , ξn} of Confn(Σg,1) is fixed, where ξ1, . . . , ξn
are points on the interval ∂+Σg,1.

For j ∈ {0, . . . , k − 1}, let ηj be the oriented loop which consists of connecting ξ1 to xj along α then xj

to ξ1 in β. We can write ϕ
Hg
1 (ηj) = σ2nj for some integer nj ∈ Z, since ηj is a loop in S. This is due to the

loop being separating and Prop. 4.1.
Next, for j < j′ ∈ {0, . . . , k− 1}, we consider the 2-braid βj,j′ in Σg,1 which consists of connecting (ξ1, ξ2)

along α to (xj , xj′), then (xj , xj′) to (ξ1, ξ2) or (ξ2, ξ1) along β[2].
Let us write βj,j′(t) = {y1(t), y2(t)}, where yi(t) are continuous path in Σg,1. Since the 2-braid βj,j′ can

be considered a 2-braid in the g-holed sphere S, we can consider its index Aj,j′ , which can be defined as the

number of half turns that the vector
−→

y1(t)y2(t) does along βj,j′ . Alternatively, Aj,j′ is defined by the formula:

βj,j′ = (ηj , ξ2)σ
Aj,j′
1 (ηj′ , ξ2),
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considered as an identity of 2-braids in Σg,1. Here σ1 is the element braid which exchanges ξ1 and ξ2,
introduced in Equation 11. Note that we have

ϕ
Hg
2 (βj,j′) = σ2nj+2nj′+Aj,j′ .

We claim that the data {nj , 0 ≤ j ≤ k − 1} and {Aj,j′ , 0 ≤ j < j′ ≤ k − 1} is sufficient to compute the

n-point twisted intersection 〈α(n), β[n]〉Hg for any n ≥ 2 :

Proposition 5.3. Let α and β as above, and n ≥ 2. Then

〈α(n), β[n]〉Hg =
∑

0≤i1,...,in≤k−1

(−1)

n∑
j=1

ij
σ

2
n∑
j=1

nj
(−σ)

∑
1≤l<j≤n

Ail,ij
.

Proof. We apply the pairing formula given in Equation 22. The intersection points x between α(n) and
β[n] are in correspondance with n-tuples (i1, . . . , in) with 0 ≤ ij ≤ k − 1, the index ij indicating that the
intersection point chosen for the j-th parallel cable of β and α is xj . The sign εj of that intersection point
is (−1)ij . Indeed, we have chosen the sign of x0 to be +1, and α being separating, the sign of intersection
points x0, x1, . . . , xk−1 alternate. It remains to show that for the loop δx appearing in Equation 22, we have

ϕHg
n (δx) = σ

2
n∑
j=1

nj
σ

∑
1≤l<j≤n

Ail,ij
.

Note that the loop δx is actually a loop in Confn(S), and that the image of π1(Confn(S)) by ϕ
Hg
n is 〈σ〉

(thanks to Proposition 4.1) which is abelian. So it is sufficient to know to which element of the abelianization
π1(Confn(S)) = π1(Confn(Dg)) the loop δx corresponds. However, it is well-known that this abelianization
is Zg+1, where each of the first g factors correspond to looping one point around one hole, and the last factor
corresponds to the total winding number. The total winding number of δx is exactly

∑
1≤l<j≤n

Ail,ij , and

it contributes σ

∑
1≤l<j≤n

Ail,ij
to ϕ

Hg
n (δx), while looping around the holes is accounted by the factor σ

2
n∑
j=1

nj
,

thanks to Proposition 4.1.
�

6. Recovering some Lawrence representations of braid groups

In this section we are interested in recovering Lawrence representations of braid groups as subrepresen-

tations of ρ
Hg
n . We first recall what we mean by Lawrence representations and what we need to know. The

n-th (colored) Lawrence representation is the homological representation of the pure braid group PBk:

(24) Lck,n : PBk → AutZ[s±1
1 ,...,s±1

k ,σ±1]

(
HBM
n (Confn(Dk),Confn(Dk)−;ϕ)

)
.

In the above, the local system on Confn(Dk) is such that ϕ((γ, ξ2, . . . , ξn)) = si if γ is a loop based at
ξ1 going once counterclockwise around the puncture wi, and ϕ(σi,i+1) = σ, if σi,i+1 is the standard braid
generator of Dk+n that exchanges points ξi and ξi+1. The local system is described in [Ma20, Def. 2.5] (where
σ is t). Now these precise relative versions of Lawrence representations are defined in [Ma20, Lemma 6.35].
By relative version we mean that the homology involved is relative to part of the boundary while original
Lawrence representations were defined on absolute homologies. The exponent c refers to the fact that these
representations are colored and hence must be restricted to the pure braid group. Under the morphism:

(25) Z[s±1
1 , . . . , s±1

k , σ±1]→ Z[s±1, σ±1], si 7→ s,

one obtains the Lawrence representations of braid groups:

(26) Lk,n : Bk → AutZ[s±1]

(
HBM
n (Confn(Dk),Confn(Dk)−;ϕ′)

)
,

where ϕ′ is ϕ postcomposed with (25). They are well defined on the whole braid group, see [Ma20,
Lemma 6.33]. Let D◦k denote the disk with k-holes that is with k disks removed (rather than punctures).
Notice that it has the same fundamental group as Dk and their configuration spaces are also homotopy
equivalent.
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· · ·

i1

•

i2

•

ik−1

•

ik

•

j1 j2 jk−1 jk

,

We denote by AG(i1, . . . , ik) the diagram in green in the above picture and by AB(j1, . . . , jk) the one
in blue. By adding to them handles namely paths rejoining base points, they define homology classes and
Theorem 2.8 adapts to our situations so that we have:

(27) Hn(Dk) = SpanZ[G]〈AG(i1, . . . , ik), i1 + · · ·+ ik = n〉,

(28) Hn(D◦k) = SpanZ[G]〈AB(j1, . . . , jk), j1 + · · ·+ jk = n〉
Hence these modules are free on Z[G] for any ϕ : π1(Confn(Dk))→ G. It is true up to any convenient choice
of threads so that we do not draw them (two different choices lead to a diagonal change of basis given by
multiplication by an invertible element). In the Lawrence case, when Z[G] is the ring of Laurent polynomials,
one has that Hn(D◦k) injects in Hn(Dk), and the diagonal change of basis between the AG and the AB is
precisely (up to multiplication by a monomial) that given in [Ma20, Prop. 7.4] (and one should remove the
quantum binomials in the formula). It is a diagonal change of basis but not invertible when working over
the ring Z[G].

We recall the new approach to these representations provided by Theorem 3.7 that reconstructs homo-
logical representations from a free module spanned by diagrams after killing the kernel of a pairing.

Remark 6.1. We let V (Dk) (resp. V (D◦k)) be the free Z[s±1
1 , . . . , s±1

k , σ±1]-module of diagrammatic twisted
classes in Dk (resp. in D◦k). Then Hn(Dk) (resp. Hn(D◦k)) is the quotient of V (Dk) (resp. V (D◦k)) by the
left kernel of the pairing defined by the formula in Section 3.2 where the local system is the one defined above
yielding coefficients in Z[s±1

1 , . . . , s±1
k , σ±1]. The representation of Lck,n is constructed using the action of the

mapping class group in the basis and the pairing. We denote by Lc,◦k,n the representation on Hn(D◦k)

Remark 6.2. Thanks to [Big00], the representation L◦k,2 (uncolored) is faithful when restricted to the rep-

resentation of Bk on a submodule of H2(D◦k) constructed from the absolute homology. The fact that it is a
submodule is a consequence of the short exact sequence in the proof of [Ma20, Corollary 7.1]. Hence Lc,◦k,2 is
a faithful representation of PBk because it specializes to L◦k,2. Actually Lck,n is faithful too for all n > 2, as
a consequence of the surjective map in the same short exact sequence just mentioned since they all surject to
the n = 2 case.

6.1. Evaluated Lawrence representations as a subrepresentation of a pure braid group on g
strands made of separating twists. Let S be a disk with g holes embedded in Σg,1, so that the boundary
components of S consist of the boundary component of Σg,1 and g non parallel separating closed curves
c1, . . . , cg, each of genus 1. The surface Σg,1 is then the union of S and g one-holed tori. Here is a picture of
S:

· · ·
c1 c2 cg−1 cg

,

where to embed it into Σg,1, one has to connect sum a torus along each red disk.
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Note that Mod(S) is isomorphic to the framed pure braid group on g strands denoted by PBfg . Moreover,
we have that the quotient

Mod(S)/〈τc1 , . . . , τcg 〉 ' PBg
is a pure braid group on g strands.

Note that Mod(S) is generated by Dehn-twists along simple closed curves in S, however, any simple closed
curve in S is separating in Σg,1. Therefore, Mod(S) ⊂ KHg , since any separating twist is in KHg , and the

representation ρ
Hg
n is defined on Mod(S).

Restricted to this subgroup, the representation ρ
Hg
n admits a subrepresentation. Indeed, let

HSn = HBM
n (Confn(S),Confn(S)−; (ϕHg

n )|π1(Confn(S)))

where Confn(S)− denotes configurations of n points in S such that at least one point belongs to the interval
∂−Σg,1. It is clear that Mod(S) stabilizes this subspace, since Mod(S) stabilizes S. Let L be the image

of (ϕ
Hg
n )|π1(Confn(S)), we have recalled in (28) that the Z[L]-modules HSn are free. Let us call ρSn this

subrepresentation of ρn|Mod(S).

Our claim is that the representation ρSn recovers an evaluated Lawrence representation of a pure braid
group.

Theorem 6.3. The representation ρSn of Mod(S) induces a representation of the pure braid group PBg
which is isomorphic to the n-th Lawrence representation Lg,n from (26) restricted to PBg, and evaluated at
s = σ−2.

Proof. First, notice that τc1 , . . . , τcn act trivially on HSn , since S lies in the exterior of each of the separating
curves c1, . . . , cn. So ρSn can be considered as a representation of

PBg ' Mod(S)/〈τc1 , . . . , τcg 〉.
By Proposition 3.7 for Lawrence representations (summarized in Rem. 6.1), it suffices to check that the
twisted intersection forms of ρSn is the twisted intersection form for the Lawrence representation evaluated
at q = σ−2. By the definition of the twisted intersection given in Section 3.2, we only need to check that the
local system

ϕHg
n |π1(Confn(S)) : π1(Confn(S)) −→ L

coincides with the one for the evaluated Lawrence representation. However, it follows by Proposition 4.1
that this is the case, since the boundary components c1, . . . , cg each bound a one-holed torus. �

Remark 6.4. It is not known to the authors whether the Lawrence representation involved in the above
theorem is still faithful after the evaluation.

6.2. A pure braid subgroup on g strands of Mod(Σg,1) acts faithfully. We draw the surface Σg,1
from above:

U•

•
D

•R· · ·
c1 c2 cg−1 cg

α1 α2 αg−1 αg

Namely we assume a coordinate system (xyz) such that points (UDR) form the (xy) plane of equation z = 0
which also contains curves (c1, . . . , cg), hence the z axis arrives orthogonally to the eye of the reader. Let

Sg = Σg,1 ∩ {z ≥ 0},
then Sg is a disk with g holes. It is thus a sphere with g + 1 holes but we give a particular status to the
boundary component containing points U,D,R, hence made of the magenta arc and the arc that goes from
U to D passing by R, we call this circle the boundary of the disk. In the figure we drew in light gray arcs
that are not in Sg.
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Definition 6.5. For g > 1 notice that no boundary component of Sg bounds a punctured disk, nor an annulus
in Σg,1, so that [FM, Theorem 3.18] claims that Gg := Mod(Sg) injects in Mod(Σg,1). The latter subgroup
Gg is isomorphic to a framed pure braid group on g strands. We let:

Pg := Gg
/
〈τc1 , . . . , τcg 〉

be the quotient of Gg by the group generated by Dehn twists along curves ci’s, and we notice that Pg is
isomorphic to a pure braid group on g strands. The above quotient has a natural section, so that one can
think of Pg as a subgroup of Gg or of Mod(Σg,1).

We let pi,j be a path in Sg joining ci and cj avoiding all the αj ’s and ti,j be a simple closed curve of Sg
bounding a tubular neighborhood of ci ∪ pi,j ∪ cj . It is well known that Gg is generated by the Dehn twists
along the ti,j ’s and along the ci’s.

We study the representation ρ
Hg
n restricted to Gg, we recall the morphism:

(29) Mod(Σg,1)→ Aut(Hg), [f ] 7→ f∗.

Proposition 6.6. Let [f ] ∈ Gg, for any i ∈ {1, . . . , g}, we have:

f∗(bi) = bi,

f∗(ai) = aib
mi(f),

where:

bm
i(f) = b

mi1(f)
1 · · · bm

i
g(f)

g ,

so that mi(f) is a notation for (mi
1(f), . . . ,mi

g(f)) ∈ Zg.

Let M(f) be the matrix with i-th column being mi(f). We furthermore have that M(f) is symmetric and
that for f1, f2 ∈ G:

M(f1 ◦ f2) = M(f1) +M(f2),

Proof. We recall that the action on Hg/〈σ〉 induced by Mod(Σg,1) is exactly the homological action of
Mod(Σg,1) on H1(Σg,1,Z).

Let [f ] ∈ Gg,, thus f is supported on Sg and in particular it stabilizes the subsurface Sg. Moreover, the
fundamental group of Sg is a free group of rank g, generated by the loops β1, . . . , βg, introduced in Notation

1. Hence the image of the loops βi := {βi, ξ2, . . . , ξn} in Confn(Σg,1) are compositions of loops βj
±1, and

therefore mapped to an element of B = 〈b1, . . . , bg〉. Note that the latter subgroup B of Hg is isomorphic to
Zg. Moreover f fixes the loops ci pointwise so that f stabilizes the homology class of βi for any i ∈ {1, . . . , g}.
Hence f∗(bi) = bi.

Finally, note that the homology class [ai] must be sent by f to another homology class with algebraic
intersection 0 with all [bj ], i 6= j, and algebraic intersection 1 with [bi]. Therefore, we must have

f∗(ai) = aib
mi(f)σli(f),

for some mi(f) ∈ Zg and some li(f) ∈ Z.
The fact that the matrix M(f) is symmetric is a consequence of the fact that the homological action of

f on H1(Σg,1) respects the intersection form. Indeed, one has

0 = ω([f(ai)], [f(aj)]) = ω([ai] +
∑
k

mi
k(f)[bk], [aj ] +

∑
k

mj
k(f)[bk]) = mj

i (f)−mi
j(f).

Finally, it is clear from the formula for f∗ that f −→M(f) is a morphism.
Now let A−i := αi ∩ {z ≤ 0}. Notice that A−i is fixed by f . Let Pi and Qi be the ends of A−i . There

is an ambient isotopy of Σg,1 supported on Sg that rejoins Pi and Qi. This shows that f(αi) is isotopic to
αi followed by a loop in Sg. Then if α′i is the conjugation of αi (traveled with negative z first) by a path
from D to αi in the plane {z = 0}, we recall that α′i := {α′i, ξ2, . . . , ξn} is a generator sent to ai by the local

system ϕ
Hg
n . Its image is thus a loop with image ai composed with a loop with image in B thanks to the

ambient isotopy just discussed. This implies that li = 0, and concludes the proof. �
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Let h = ax1
1 · · · a

xg
g b

y1
1 · · · b

yg
g σs ∈ Hg, according to the proposition, we have:

f∗(h) = ax1
1 · · · axgg

∏
i

b
yi+

∑
j xjm

j
i (f)

i σs

and as a consequence we refine the restriction of (29) to:

Gg → Zg(g+1)/2

f 7→ f∗ = (mj
i (f))1≤i≤j≤g.

It is easy to check that this is surjective, namely that M(τci) = Ei,i and M(τti,j ) = Ei,j +Ej,i +Ei,i +Ej,j ,
which recovers generators of symmetric matrices (with a standard notation used for the canonical generators
of spaces of matrices).

Lemma 6.7. The group [Gg, Gg] is in KHg .

Proof. Since the image of Gg in Aut(Hg) is an abelian group, [Gg, Gg] acts trivially on Hg which is the
definition of KHg . �

Restricted to this subgroup, the representation ρ
Hg
n admits a subrepresentation. Indeed, let

HSgn = HBM
n (Confn(Sg),Confn(Sg)

−; (ϕHg
n )|π1(Confn(Sg)))

where Confn(Sg)
− denotes configurations of n points in Sg such that at least one point belongs to the

interval ∂−Σg,1. It is clear that Mod(Sg) stabilizes this subspace, since Mod(Sg) stabilizes Sg. Let L be the

image of (ϕ
Hg
n )|π1(Confn(Sg)), we note that following (28), the Z[L]-modules HSgn are free. Let us call ρ

Sg
n this

subrepresentation of ρ
Hg
n |Mod(Sg).

Theorem 6.8. The representation ρ
Sg
n of Mod(Sg) induces a representation of the pure braid group Pg

with coefficients in a ring of Laurent polynomials Z[b±1
1 , . . . , b±1

g , σ±1]. It is isomorphic to the n-th colored
Lawrence representation Lc,◦g,n of PBg (from (24), see Rem. 6.1 for the case with holes rather than punctures)
under the obvious isomorphism of rings

Z[b±1
1 , . . . , b±1

g , σ±1] ' Z[s±1
1 , . . . , s±1

g , σ±1].

.

Proof. First notice that L is here the subgroup 〈b1, . . . , bg, σ〉 of Hg since π1(Confn(Sg)) is generated by
classes of loops βi’s described above and braids σi,i+1 described in Not. 1. The subgroup L is abelian, which

justifies that Z[L] = Z[b±1
1 , . . . , b±1

g , σ±1].
According to Prop. 6.6, one notices that the action of Gg on L is trivial, so that it results in a (non-crossed)

Z[L]-linear representation ρ
Sg
n of Gg on HSgn .

We also note that τc1 , . . . , τcn act trivially on HSgn , which means that acts of ρ
Sg
n can be considered a

representation of Pg rather than of Gg.
Following the construction described in Remark 6.1, it is sufficient to check that the twisted intersection

form of ρ
Sg
n is the twisted intersection form for the Lawrence representation. By the definition of the twisted

intersection form given in Section 3.2, we only need to check that the local system

ϕHg
n |π1(Confn(Sg)) : π1(Confn(Sg)) −→ L

coincides with the one for the Lawrence representation (denoted ϕ in (24)). It is obvious after identifying
bi’s with si’s. �

As a consequence, we found a subgroup of KHg that acts faithfully under ρ
Hg
n for n > 1.

Corollary 6.9. The subgroup [Pg, Pg] of Mod(Σg,1) acts faithfully under ρ
Hg
n for n > 1. Hence the crossed

action ρ̃
Hg
n is faithful on Pg.
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Proof. We claim that the representations Lc,◦g,n are faithful for n > 1 (Remark 6.2).

Notice that ρ
Hg
n is not defined on Pg since Pg 6⊂ KHg , only its restriction to the submodule involved in

Theorem 6.8 is. Nevertheless, the crossed action ρ̃
Hg
n from Proposition 2.4 is defined on Pg, its kernel is in

KHg , and [Pg, Pg] = Pg ∩KHg acts faithfully which concludes the proof.
�

We note that ρ̃
Hg
n being faithful on such a sugroup Pg is a very positive sign in the direction of ρ

Hg
n being

faithful.

6.3. Evaluated Lawrence representations as subrepresentations of a pure braid group on 2g
strands in Mod(Σg,1). We let V2g be the subsurface of Σg,1 depicted in green in the following picture:

1 1 g g· · ·

c1 d1 dgcg

The surface V2g can also be described as a regular neighborhood of the union of ∂Σg,1 and 2g − 1 arcs that
separate the disks onto which we glued the g handles. It is homeomorphic to a disk with 2g holes. We
denote by c1, d1, . . . , cg, dg the boundary curves of V2g (other than ∂Σg,1). Notice that none of the boundary
components of Vg bounds a disk in Σg,1. Nevertheless the boundary components ci and di cobound a cylinder
in Σg,1 for all i ∈ {1, . . . , g}. According to [FM, Theorem 3.18], denoting G2g := Mod(V2g), there is a map:

η : G2g → Mod(Σg,1),

and its kernel is the free abelian group generated by the products of Dehn twists of the form τciτ
−1
di

, for all

i ∈ {1, . . . , g}. Now notice that G2g is isomorphic to a framed pure braid group on 2g strands, so that:

P2g := G2g

/
〈τc1 , τd1 , . . . , τcg , τdg 〉

is thus isomorphic to a pure braid group on 2g strands. There is a section to the exact sequence 1 →
〈τc1 , τd1 , . . . , τcg , τdg 〉 → G2g → P2g → 1, so P2g can be considered a subgroup of G2g, and even of Mod(Σg,1)
since ker η ∩ P2g is trivial.

Proposition 6.10. Let [f ] ∈ Im(η), for any i ∈ {1, . . . , g}, we have:

f∗(ai) = ai

f∗(bi) = bia
mi(f)σli(f),

where li ∈ Z and:

am
i(f) = a

mi1(f)
1 · · · am

i
g(f)

g ,

so that mi(f) is a notation for (mi
1(f), . . . ,mi

g(f)) ∈ Zg. Let M(f) be the matrix with i-th column being

mi(f). We furthermore have that M(f) is symmetric and that for f1, f2 ∈ G:

M(f1 ◦ f2) = M(f1) +M(f2), li(f1 ◦ f2) = li(f1) + li(f2).

Proof. The proof is similar to the proof of Proposition 6.6. Again, the action on Hg/〈σ〉 induced by Mod(Σg,1)
is the homological action of Mod(Σg,1) on H1(Σg,1,Z). Since f is supported on V2g, it stabilizes it. Moreover,
the fundamental group of V2g is a free group of rank 2g, generated by the loops c′1, d

′
1, . . . , d

′
g, obtained from

the corresponding curve conjugated by a path from the leftmost boundary side in the picture to the curve
that is supported in V2g. In these loops we suppose that the curves ci’s and di are traveled counterclockwise
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regarding the planar picture orientation. If one defines ci = {c′i, ξ2, . . . , ξn} and di = {d′i, ξ2, . . . , ξn} to be
loops in Confn(Σg,1) notice that:

ϕHg
n (ci) = ai, and ϕHg

n (di) = a−1
i σ−2.

see Notation 1. Hence the image of the loops ci by f are sent to compositions of loops ci
±1 and di

±1, but
stabilizes ci’s (and di’s) pointwise so that f∗(ai) = ai. As in the proof of Proposition 6.6, the homology
class [bi] must be sent by f to another homology class with algebraic intersection 0 with all [aj ], i 6= j, and
algebraic intersection 1 with [ai]. Therefore,

f∗(bi) = bia
mi(f)σli(f),

for some mi(f) ∈ Zg and some li(f) ∈ Z. The fact that the matrix M(f) is symmetric, and that f∗ that
f −→M(f) and f −→ li(f) are morphisms, is proved as in the proof of Proposition 6.6. �

Let h = ax1
1 · · · a

xg
g b

x1
1 · · · b

xg
g σs ∈ Hg, according to the proposition, we have:

f∗(h) = ax1
1 · · · axgg

∏
i

b
yi+

∑
j m

j
i (f)

i σs+
∑
j lj(f)

and as a consequence we refine the restriction of (29) to:

Im(η) → Zg(g+3)/2

f 7→ f∗ = (mj
i (f))1≤i≤j≤g ⊕ (li(f))i∈{1,...,g}.

Lemma 6.11. The group [Im(η), Im(η)] is in KHg .

Proof. Since the image of Im(η) in Aut(Hg) is an abelian group, its derived subgroup acts trivially on Hg
which is the definition of KHg . �

Restricted to [P2g,P2g], the representation ρ
Hg
n admits a subrepresentation. Indeed, let

HVgn = HBM
n (Confn(V2g),Confn(V2g)

−; (ϕHg
n )|π1(Confn(V2g)))

where Confn(V2g)
− denotes configurations of n points in V2g such that at least one point belongs to the

interval ∂−Σg,1. It is clear that Im(η) stabilizes this subspace. Let L be the image of (ϕ
Hg
n )|π1(Confn(V2g)), we

note that following (28), the Z[L]-modules HV2gn are free. Let us call ρ
V2g
n this subrepresentation of ρ

Hg
n |Im(η).

Theorem 6.12. The representation ρ
V2g
n of Im(η) induces a representation of the pure braid group P2g

with coefficients in a ring of Laurent polynomials Z[a±1
1 , . . . , a±1

g , σ±1]. It is isomorphic to the n-th colored

Lawrence representation Lc,◦2g,n of PB2g (from (24), see Rem. 6.1 for the case with holes rather than punctures)
evaluated by the following morphism of rings:

Z[s±1
1 , . . . , s±1

2g , σ
±1] → Z[a±1

1 , . . . , a±1
g , σ±1]

s2k−1 7→ ak,
s2k 7→ a−1

k σ−2,
σ 7→ σ

where k is any integer in {1, . . . , g}.
Proof. First notice that Z[L] is here Z[a±1

1 , . . . , a±1
g , σ±1] since π1(Confn(V2g)) is generated by classes of

loops ci’s and di’s described above and braids σi,i+1 described in Not. 1.
According to Prop. 6.10, one notices that the action of Im(η) on L is trivial, so that it results in a

(non-crossed) Z[L]-linear representation ρ
V2g
n of Im(η) on HV2gn . Following the construction described in

Remark 6.1, it is sufficient to check that the twisted intersection form of ρ
V2g
n is the twisted intersection form

for the Lawrence representation. By the definition of the form given in Section 3.2, we only need to check
that the local system

ϕHg
n |π1(Confn(V2g)) : π1(Confn(V2g)) −→ L

coincides with the one for the Lawrence representation (denoted ϕ in (24)). It is clear that it is true at the
evaluation mentioned in the statement. �
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Université de Cergy-Pontoise

Email address: jules.martel-tordjman@cyu.fr


	1. Introduction
	1.1. History of homological representations for mapping class groups and of their kernels
	1.2. Content of the paper
	Acknowledgments

	2. Constructions of homological representations
	2.1. Crossed and uncrossed representations on twisted homologies
	2.2. Twisted homologies of configuration spaces and structure
	2.3. The Heisenberg twisted case
	2.3.1. Heisenberg local systems
	2.3.2. Linearization of Hg and related quotients

	2.4. An extension of Hg1 to closed surfaces

	3. Intersection form and faithfulness criterion
	3.1. Twisted intersection form
	3.2. Dual families and non degeneracy
	3.3. Alternative construction of the representations
	3.4. Intersection of arcs in a surface and a faithfulness criterion

	4. The single-point case
	4.1. Action of Dehn twists: twisted-transvection formula and consequences
	4.2. Discussions on the kernel
	4.2.1. Intersection form has kernel
	4.2.2. Kernel elements for the Heisenberg  12mumod2k-1 representation


	5. The several-points case
	5.1. Kernel in the intersection form 12mumod2k, where k<g
	5.2. A simplified formula for the n points intersection form

	6. Recovering some Lawrence representations of braid groups
	6.1. Evaluated Lawrence representations as a subrepresentation of a pure braid group on g strands made of separating twists
	6.2. A pure braid subgroup on g strands of Mod(g,1) acts faithfully
	6.3. Evaluated Lawrence representations as subrepresentations of a pure braid group on 2g strands in Mod(g,1)

	References

